نتایج جستجو برای: matrix algebra
تعداد نتایج: 425785 فیلتر نتایج به سال:
We study the problem of matrix Lie algebra conjugacy. Lie algebras arise centrally in areas as diverse as differential equations, particle physics, group theory, and the Mulmuley–Sohoni Geometric Complexity Theory program. A matrix Lie algebra is a set L of matrices such that M1,M2 ∈ L =⇒ M1M2 − M2M1 ∈ L. Two matrix Lie algebras are conjugate if there is an invertible matrix M such that L1 = ML...
چکیده ندارد.
A braided Yang-Baxter Algebra in a Theory of two coupled Lattice Quantum KdV: algebraic properties and ABA representations. Abstract A generalization of the Yang-Baxter algebra is found in quantizing the mon-odromy matrix of two (m)KdV equations discretized on a space lattice. This braided Yang-Baxter equation still ensures that the transfer matrix generates operators in involution which form t...
in this paper we consider selberg-type square matrices integrals with focus on kummer-beta types i & ii integrals. for generality of the results for real normed division algebras, the generalized matrix variate kummer-beta types i & ii are defined under the abstract algebra. then selberg-type integrals are calculated under orthogonal transformations.
In this paper we discuss matrix decompositions in the symmetrized max-plus algebra. The max-plus algebra has maximization and addition as basic operations. In contrast to linear algebra many fundamental problems in the max-plus algebra still have to be solved. In this paper we discuss max-algebraic analogues of some basic matrix decompositions from linear algebra. We show that we can use algori...
A classic result of representation theory is Brauer’s construction of a diagrammatical (geometrical) algebra whose matrix representation is a certain given matrix algebra, which is the commutating algebra of the enveloping algebra of the representation of the orthogonal group. The purpose of this paper is to provide a motivation for this result through the categorial notion of symmetric self-ad...
We prove that every positive trace on a countably generated ∗-algebra can be approximated by positive traces on algebras of generic matrices. This implies that every countably generated tracial ∗-algebra can be embedded into a metric ultraproduct of generic matrix algebras. As a particular consequence, every finite von Neumann algebra with separable pre-dual can be embedded into an ultraproduct...
Given a left module U and a right modules V over an algebra D and a bilinear form β : U × V → D, we may define an associative algebra structure on the tensor product V ⊗D U . This algebra is called a near-matrix algebra. In this paper, we shall investigate algebras filtered by near-matrix algebras in some nice way and give a unified treatment for quasi-hereditary algebras, cellular algebras, an...
In this paper we discuss matrix decompositions in the symmetrized max-plus algebra. The max-plus algebra has maximization and addition as basic operations. In contrast to linear algebra many fundamental problems in the max-plus algebra still have to be solved. In this paper we discuss max-algebraic analogues of some basic matrix decompositions from linear algebra. We show that we can use algori...
We prove in this paper that the elliptic R–matrix of the eight vertex free fermion model is the intertwiner R–matrix of a quantum deformed Clifford–Hopf algebra. This algebra is constructed by affinization of a quantum Hopf deformation of the Clifford algebra. IMAFF-2/93 February 1993
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید