نتایج جستجو برای: multi step ahead prediction

تعداد نتایج: 962964  

2013
Artem N. Chernodub

This paper is dedicated to the long-term, or multi-step-ahead, time series prediction problem. We propose a novel method for training feed-forward neural networks, such as multilayer perceptrons, with tapped delay lines. Special batch calculation of derivatives called Forecasted Propagation Through Time and batch modification of the Extended Kalman Filter are introduced. Experiments were carrie...

2005
Kristjan Ažman Juš Kocijan

The paper describes the identification of nonlinear dynamic systems with a Gaussian process prior model. This approach is an example of a probabilistic, non-parametric modelling. Gaussian process model can be considered as the special case of radial basis function network and as such an alternative to neural networks or fuzzy black box models. An attractive feature of Gaussian process model is ...

2002
Gregor Gregorčič Gordon Lightbody

Parametric multiple model techniques have recently been proposed for the modelling of non–linear systems and use in nonlinear control. Research effort has focused on issues such as the selection of the structure, constructive learning techniques, computational issues, the curse of dimensionality, off–equilibrium behavior etc. To reduce these problems, the use of non–parametrical modelling appro...

     The purpose of this study was to compare the accuracy of genomic evaluation for Bayes A, Bayes B, Bayes C and Bayes L multi-step methods and SSBR-C and SSBR-A single-step methods in the different values of π for predicting genomic breeding values of the genotyped and non-genotyped animals. A genome with 40000 SNPs on the 20 chromosom was simulated with the same distance (100cM). The π valu...

2016
Amélie Charles Olivier Darné Jae H. Kim Amélie CHARLES Olivier DARNÉ Jae H. KIM

This paper evaluates the predictability of monthly stock return using out-of-sample (multi-step ahead and dynamic) prediction intervals. Past studies have exclusively used point forecasts, which are of limited value since they carry no information about the intrinsic predictive uncertainty associated. We compare empirical performances of alternative prediction intervals for stock return generat...

2016
Yiqi Liu Jianhua Guo Qilin Wang Daoping Huang

Activated sludge process has been widely adopted to remove pollutants in wastewater treatment plants (WWTPs). However, stable operation of activated sludge process is often compromised by the occurrence of filamentous bulking. The aim of this study is to build a proper model for timely diagnosis and prediction of filamentous sludge bulking in an activated sludge process. This study developed a ...

Journal: :CoRR 2017
Rohitash Chandra Yew-Soon Ong Chi-Keong Goh

Multi-task learning employs shared representation of knowledge for learning multiple instances from the same or related problems. Time series prediction consists of several instances that are defined by the way they are broken down into fixed windows known as embedding dimension. Finding the optimal values for embedding dimension is a computationally intensive task. Therefore, we introduce a ne...

2004
R. HoseinNezhad A. Bab-Hadiashar P. Harding

A multi-step ahead predictive filter for missing data handling is presented in this paper. This is a simple FIR filter, useful for time and memory critical applications. Furthermore, our proposed algorithm is formulated in such a way that only one set of FIR weights are tuned (by steepest gradient descent method), memorised and used by the system for different numbers of steps ahead in predicti...

2000
Gianluca Bontempi Mauro Birattari

The task of forecasting a time series over a long horizon is commonly tackled b y iterating one-step-ahead predictors.Despite the popularity that this approach gained in the prediction communit y, its design is still plagued by a number of important unresolved issues, the most important being the accumulation of prediction errors. We introduce a local method to learn one-step-ahead predictors w...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید