نتایج جستجو برای: neural networks and neuro

تعداد نتایج: 16944010  

2002
ARPAD KELEMEN YULAN LIANG STAN FRANKLIN

In this paper, several neural network and statistical learning approaches are proposed that learn to make human like decisions for the job assignment problem of the US Navy. Comparison study of Feedforward Neural Networks (FFNN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM) and Adaptive Bayes (AB) classifier with Generalized Estimation Equation (GEE) is provided. ...

A. Malihi M. Darvizeh M. Javadzadeh N. Narimanzadeh R. Ansari,

The Existence of crack in a structure leads to local flexibility and changes  the stiffness and dynamic behavior of the structure. The dynamic behavior of the cracked structure depends on the depth and the location of the crack. Hence, the changes in the dynamic behavior in the structure due to the crack can be used for identifying the location and depth of the crack. In this study the first th...

Journal: :persian journal of acarology 0
alireza shabaninejad bahram tafaghodinia nooshin zandi sohani

today, with the advanced statistical techniques and neural networks, predictive models of distribution have been rapidly developed in ecology. purpose of this research is to predict and map the distribution of tetranychus urticae koch (acari: tetranychidae) using mlp neural networks combined with genetic algorithm in surface of farm. population data of pest was obtained in 2016 by sampling in 1...

ژورنال: مهندسی دریا 2014
آزرم سا, سید علی , صادقی فر , طیب,

Many empirical methods for estimating LSTR have been introduced by scientists during the recent decades, but these methods have been calibrated and applied under limited conditions of bed profile and specific range of bed sediment size. The existing empirical relations are linear or exponential regressions based on the observation and measurements data and there’s a great potential to build mor...

2010
Jaesoo Kim Nikola Kasabov

In this paper, an adaptive neuro-fuzzy system, called HyFIS, is proposed to build and optimise fuzzy models. The proposed model introduces the learning power of neural networks into the fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training eramples by a ...

Journal: :Computers & Geosciences 2009
Emad A. El-Sebakhy

Pressure–volume–temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mi...

2014
Inara Aparecida Ferrer Silva

The fuzzy and neuro fuzzy systems have been successfully used to solve problems in various fields such as medicine, manufacturing, control, agriculture and academic applications. In recent decades, neural networks have been used to the identification, assessment and diagnosis of diseases. In this thesis we performed a comparative study among fuzzy neural networks (ANFIS), multilayer perceptron ...

Journal: :international journal of agricultural management and development 2011
mohammad reza pakravan mohammad kavoosi kelashemi hamid reza alipour

in the present study iran’s rice imports trend is forecasted, using artificial neural networks and econometric methods, during 2009 to 2013, and their results are compared. the results showed that feet forward neural network leading with less forecast error and had better performance in comparison to econometric techniques and also, other methods of neural networks, such as recurrent networks a...

2009
Zainal A. Hasibuan Romi Fadhilah Rahmat Muhammad Fermi Pasha Rahmat Budiarto

For a long time neural networks have been a popular approach for intelligent machines development and knowledge discovery. However, problems still exists in neural networks, such as fixed architecture and excessive training time. One of the solutions to unravel this problem is by using neuro-genetic approach. A neuro-genetic approach is inspired by a theory in neuroscience which state that the ...

Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید