نتایج جستجو برای: roman game domination subdivision number
تعداد نتایج: 1281554 فیلتر نتایج به سال:
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...
A Roman dominating function (RDF) on a graphG = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = ∑ u∈V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number γR(G)...
Let γ(G) denote the domination number of a graph G. A Roman domination function of a graph G is a function f : V → {0, 1, 2} such that every vertex with 0 has a neighbor with 2. The Roman domination number γR(G) is the minimum of f(V (G)) = Σv∈V f(v) over all such functions. Let G H denote the Cartesian product of graphs G and H. We prove that γ(G)γ(H) ≤ γR(G H) for all simple graphs G and H, w...
A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number...
The weakly connected domination subdivision number sdγw(G) of a connected graph G is the minimum number of edges which must be subdivided (where each edge can be subdivided at most once) in order to increase the weakly connected domination number. The graph is strongγw-subdivisible if for each edge uv ∈ E(G) we have γw(Guv) > γw(G), where Guv is a graph G with subdivided edge uv. The graph is s...
let $d$ be a finite and simple digraph with vertex set $v(d)$.a signed total roman $k$-dominating function (str$k$df) on$d$ is a function $f:v(d)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin n^{-}(v)}f(x)ge k$ for each$vin v(d)$, where $n^{-}(v)$ consists of all vertices of $d$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
We introduce the concept of guarded subgraph of a graph, which as a condition lies between convex and 2-isometric subgraphs and is not comparable to isometric subgraphs. Some basic metric properties of guarded subgraphs are obtained, and then this concept is applied to the domination game. In this game two players, Dominator and Staller, alternate choosing vertices of a graph, one at a time, su...
For an integer n ≥ 2, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely Roman sdominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function f : V → {0, 1, 2, · · · , n} satisfying the condition that |f(u)− f(v)| ≥ s for each edge uv ∈ E with f(u) or f(v) ∈ I . Similarly, a Smarandachely Roman edge s-dominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a func...
For any k ∈ N, the k-subdivision of a graph G is a simple graph G 1 k , which is constructed by replacing each edge of G with a path of length k. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the mth power of the n-subdivision of G has been introduced as a fractional power of G, denoted by G m n . In this regard, we investig...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید