نتایج جستجو برای: neural classifier

تعداد نتایج: 339088  

Journal: :Future Generation Comp. Syst. 2004
Zhengjun Liu Aixia Liu Changyao Wang Zheng Niu

This paper investigates the effectiveness of the genetic algorithm evolved neural network classifier and its application to the land cover classification of remotely sensed multispectral imagery. First, the key issues of the algorithm and the general procedures are described in detail. Our methodology adopts a real coded GA strategy and hybrid with a back propagation (BP) algorithm. The genetic...

2015
H. Chiroma S. Abdul-kareem U. Ibrahim I. Gadam Ahmad A. Garba A. Abubakar M. Fatihu Hamza T. Herawan Tutut Herawan Sameem Abdul-kareem

This article presents an alternative approach useful for medical practitioners who wish to detect malaria and accurately identify the level of severity. Malaria classifiers are usually based on feed forward neural networks. In this study, the proposed classifier is developed based on the Jordan-Elman neural networks. Its performance is evaluated using a receiver-operating characteristic curve, ...

2016
P. Kalyana Sundaram Kalyana Sundaram

The paper presents an S-Transform based multilayer perceptron neural network (MLP) classifier for the identification of power quality (PQ) disturbances.The proposed method is used to extract the three input features (Standard deviation, peak value and variances) from the distorted voltage waveforms simulated using parametric equations. The features extracted through S-transform are trained by a...

2009
Mark Palatucci Dean Pomerleau Geoffrey E. Hinton Tom M. Mitchell

We consider the problem of zero-shot learning, where the goal is to learn a classifier f : X → Y that must predict novel values of Y that were omitted from the training set. To achieve this, we define the notion of a semantic output code classifier (SOC) which utilizes a knowledge base of semantic properties of Y to extrapolate to novel classes. We provide a formalism for this type of classifie...

Journal: :Neural networks : the official journal of the International Neural Network Society 2005
Abdulhamit Subasi Ahmet Alkan Etem Köklükaya M. Kemal Kiymik

Since EEG is one of the most important sources of information in therapy of epilepsy, several researchers tried to address the issue of decision support for such a data. In this paper, we introduce two fundamentally different approaches for designing classification models (classifiers); the traditional statistical method based on logistic regression and the emerging computationally powerful tec...

2016
Naveen. V Natteshan Elango Divya

Image classification is a process of classifying an image based upon the training given to a classifier. There are various purposes of classification but in this work a Brain MRI image is taken as input and is mainly classified into three class’s malignant tumor and benign tumor and non tumor by using Neural Network classifier. Here a Gaussian Mixture model is used for the purpose of segmentati...

2004
Chin-Hsing Chen Jiann-Der Lee Ming-Chi Lin

In this paper, four kinds of neural network classifiers have been used for the classification of underwater passive sonar signals radiated by ships. Classification process can be divided into two stages. In the preprocessing and feature extraction stage, Two-Pass Split-Windows (TPSW) algorithm is used to extract tonal features from the average power spectral density (APSD) of the input data. In...

Abstract P300 is known as the most prominent component between cognitive components in electrical brain activity. According to done research, when brain encounters an inconsistent stimulation during processing a series of usual stimulation, a P300 component appears in recorded brain signal which could distinguishes from usual ones. Amplitude of P300 decreases after a short during act of auditor...

2004
J. J. de Oliveira

This paper presents a multiple classifier system applied to the handwritten word recognition (HWR) problem. The goal is to analyse the influence of different global classifiers taken isolatedly as well as combined in a particular HWR task. The application proposed is the recognition of the Portuguese handwritten names of the months. The strategy takes advantage of the complementary mechanisms o...

2012
Arjon Turnip Keum-Shik Hong K.-S. HONG

In this paper, a new adaptive neural network classifier (ANNC) of EEGP300 signals from mental activities is proposed. To overcome an overtraining of the classifier caused by noisy and non-stationary data, the EEG signals are filtered and their autoregressive (AR) properties are extracted using an AR model before being passed to the ANNC. For evaluation purposes, the same data in Hoffmann et al....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید