نتایج جستجو برای: rna editing

تعداد نتایج: 273016  

Journal: :Genome research 2016
Huiquan Liu Qinhu Wang Yi He Lingfeng Chen Chaofeng Hao Cong Jiang Yang Li Yafeng Dai Zhensheng Kang Jin-Rong Xu

Yeasts and filamentous fungi do not have adenosine deaminase acting on RNA (ADAR) orthologs and are believed to lack A-to-I RNA editing, which is the most prevalent editing of mRNA in animals. However, during this study with the PUK1(FGRRES_01058) pseudokinase gene important for sexual reproduction in Fusarium graminearum, we found that two tandem stop codons, UA(1831)GUA(1834)G, in its kinase ...

2015
Giovanni Nigita Salvatore Alaimo Alfredo Ferro Rosalba Giugno Alfredo Pulvirenti

RNA editing is a post-transcriptional alteration of RNA sequences that is able to affect protein structure as well as RNA and protein expression. Adenosine-to-inosine (A-to-I) RNA editing is the most frequent and common post-transcriptional modification in human, where adenosine (A) deamination produces its conversion into inosine (I), which in turn is interpreted by the translation and splicin...

Journal: :Nucleic acids research 2003
Annika M Källman Margareta Sahlin Marie Ohman

ADAR enzymes, adenosine deaminases that act on RNA, form a family of RNA editing enzymes that convert adenosine to inosine within RNA that is completely or largely double-stranded. Site-selective A-->I editing has been detected at specific sites within a few structured pre-mRNAs of metazoans. We have analyzed the editing selectivity of ADAR enzymes and have chosen to study the naturally edited ...

Journal: :Journal of Biological Chemistry 2003

Journal: :Nature Methods 2013

2012
Aamira Tariq Michael F. Jantsch

RNA editing by adenosine deaminases that act on RNA converts adenosines to inosines in coding and non-coding regions of mRNAs. Inosines are interpreted as guanosines and hence, this type of editing can change codons, alter splice patterns, or influence the fate of an RNA. A to I editing is most abundant in the central nervous system (CNS). Here, targets for this type of nucleotide modification ...

Journal: :RNA 2008
Michelle L Ammerman John C Fisk Laurie K Read

Editing in trypanosomes involves the addition or deletion of uridines at specific sites to produce translatable mitochondrial mRNAs. RBP16 is an accessory factor from Trypanosoma brucei that affects mitochondrial RNA editing in vivo and also stimulates editing in vitro. We report here experiments aimed at elucidating the biochemical activities of RBP16 involved in modulating RNA editing. In vit...

2011
Shai Carmi Itamar Borukhov Erez Y. Levanon

Adenosine-to-inosine modification of RNA molecules (A-to-I RNA editing) is an important mechanism that increases transciptome diversity. It occurs when a genomically encoded adenosine (A) is converted to an inosine (I) by ADAR proteins. Sequencing reactions read inosine as guanosine (G); therefore, current methods to detect A-to-I editing sites align RNA sequences to their corresponding DNA reg...

Journal: :The EMBO journal 1997
L N Rusché J Cruz-Reyes K J Piller B Sollner-Webb

Kinetoplastid mitochondrial RNA editing, the insertion and deletion of U residues, is catalyzed by sequential cleavage, U addition or removal, and ligation reactions and is directed by complementary guide RNAs. We have purified a approximately 20S enzymatic complex from Trypanosoma brucei mitochondria that catalyzes a complete editing reaction in vitro. This complex possesses all four activitie...

Journal: :Methods in enzymology 2007
Michel Pelletier Laurie K Read Ruslan Aphasizhev

RNA editing is a collective term referring to a plethora of reactions that ultimately lead to changes in RNA nucleotide sequences apart from splicing, 5' capping, or 3' end processing. In the mitochondria of trypanosomatids, insertion and deletion of uridines must occur, often on a massive scale, in order to generate functional messenger RNAs. The current state of knowledge perceives the editin...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید