نتایج جستجو برای: poor in addition
تعداد نتایج: 17005201 فیلتر نتایج به سال:
We consider the problem of traveling the contour of the set of all points that are within distance 1 of a connected planar curve arrangement P, forming an embedding of the graph G. We show that if the overall length of P is L, there is a closed roundtrip that visits all points of the contour and has length no longer than 2L + 2n. This result carries over in a more general setting: if R is a com...
Introduction: According to the world health organization the prevalence of type 2 diabetes in our country and world will increase sharply by 2030. Because improving glycemic control delays the onset and progression of diabetes complications, recognizing related factors is key step in the effective treatment of these patients. Therefore, this study was performed to determine the predictors of po...
abstract ion selective electrodes (ises) are electrochemical sensors that respond selectivity to the activity of ionic species. an ion-selective electrode is an electrochemical device that uses a thin selective membrane or film as the recognition element, and is an electrochemical half-cell equivalent to other half-cells of the zeroth (inert metal in a redox electrolyte). in common methods o...
submitted at the Oberwolfach Conference “Combinatorial Convexity and Algebraic Geometry” 26.10–01.11, 1997 Throughout, we fix the notation M := Z and MR := R . Given convex lattice polytopes P, P ′ ⊂ MR, we have (M ∩ P ) + (M ∩ P ) ⊂ M ∩ (P + P ), where P + P ′ is the Minkowski sum of P and P , while the left hand side means {m+m | m ∈ M ∩ P,m ∈ M ∩ P }. Problem 1 For convex lattice polytopes P...
In this paper we have shall generalize Shearer’s entropy inequality and its recent extensions by Madiman and Tetali, and shall apply projection inequalities to deduce extensions of some of the inequalities concerning sums of sets of integers proved recently by Gyarmati, Matolcsi and Ruzsa. We shall also discuss projection and entropy inequalities and their connections.
We present a tight bound on the exact maximum complexity of Minkowski sums of polytopes in R. In particular, we prove that the maximum number of facets of the Minkowski sum of k polytopes with m1,m2, . . . ,mk facets respectively is bounded from above by
We derive tight bounds for the maximum number of k-faces, 0 ≤ k ≤ d − 1, of the Minkowski sum, P1 ⊕ P2, of two ddimensional convex polytopes P1 and P2, as a function of the number of vertices of the polytopes. For even dimensions d ≥ 2, the maximum values are attained when P1 and P2 are cyclic d-polytopes with disjoint vertex sets. For odd dimensions d ≥ 3, the maximum values are attained when ...
Let P and Q be finite sets of points in the plane. In this note we consider the largest cardinality of a subset of the Minkowski sum S ⊆ P ⊕ Q which consist of convexly independent points. We show that, if |P | = m and |Q| = n then |S| = O(m2/3n2/3 + m + n).
A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let δ(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine δ(d, k) for small instances. We show that δ(3, 4) = 7 and δ(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby δ(d, ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید