نتایج جستجو برای: pseudomonas biofilm
تعداد نتایج: 73933 فیلتر نتایج به سال:
Biofilms are surface-attached microbial communities that have complex structures and produce significant spatial heterogeneities. Biofilm development is strongly regulated by the surrounding flow and nutritional environment. Biofilm growth also increases the heterogeneity of the local microenvironment by generating complex flow fields and solute transport patterns. To investigate the developmen...
Objective: Intravascular catheter-associated infection has been increasing hospitalization in post-surgery patients mainly due to microbial colonization of the catheter surface and formation of a superficial biofilm layer. The present study is aimed in developing an effective antibacterial device which can prevent colonization of organisms by modification of catheter. Methods: In the present st...
Many bacteria secrete a highly hydrated framework of extracellular polymer matrix on suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices, endocarditis, periodontitis and lung infections in cystic fibrosis patients. Bacteria in biofilm are protected from antibiotics and >1,000 times of the minimum inhibitory concentration may...
Antibiofilm and Antioxidant Activity of Propolis and Bud Poplar Resins versus Pseudomonas aeruginosa
Pseudomonas aeruginosa is a common biofilm-forming bacterial pathogen implicated in lung, skin, and systemic infections. Biofilms are majorly associated with chronic lung infection, which is the most severe complication in cystic fibrosis patients characterized by drug-resistant biofilms in the bronchial mucus with zones, where reactive oxygen species concentration is increased mainly due to ne...
Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa.
Pseudomonas aeruginosa is well known for its ability to form biofilm on indwelling medical devices. These biofilms are difficult to remove because of their high tolerance to conventional antibiotics. Therefore, there is a need to look for alternative agents such as medicinal plants, which can eradicate or inhibit biofilm effectively. This study evaluated the role of neem in inhibiting biofilm f...
P. aeruginosa has been mentioned as the major causative agents of nosocomial infections. Pseudomonas infections are often serious and show different resistance to treatment due to distribution of antimicrobial resistance. Meanwhile, some strains are also able to form biofilm during contamination, which help bacteria to be even more persisyant to yreatment. We examined the antibiotic resistance ...
Context: MIC results can be misleading for treatment of biofilm associated. The Minimum Biofilm Eradication Concentration (MBEC) measures the determination to be made for a biofilm susceptibility to antibiotics. Aims: Assessment of biofilm production and comparison of the MIC and MBEC assays evaluate differences in the antibiotic sensitivity patterns of different clinical bacterial isolates fro...
Biofilm-related infections account for at least 65% of all human infections, but there are no available antimicrobials that specifically target biofilms. Their elimination by available treatments is inefficient since biofilm cells are between 10- and 1,000-fold more resistant to conventional antibiotics than planktonic cells. Here we describe the synergistic interactions, with different classes...
BACKGROUND Although a transition toward sustainable production of chemicals is needed, the physiochemical properties of certain biochemicals such as biosurfactants make them challenging to produce in conventional bioreactor systems. Alternative production platforms such as surface-attached biofilm populations could potentially overcome these challenges. Rhamnolipids are a group of biosurfactant...
impact of plant extracts and antibiotics on biofilm formation of clinical isolates from otitis media
conclusions the bacterial isolates exhibited strong biofilm formation potential, while the extracts of acacia arabica significantly inhibited biofilm formation among the isolates and, therefore, could be executed in the development of cost-effective biofilm inhibitor medicines. results pseudomonas aeruginosa (kc417303-05), staphylococcus hemolyticus (kc417306), and staphylococcus hominis (kc417...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید