نتایج جستجو برای: مدل سازی شبکه عصبی
تعداد نتایج: 204676 فیلتر نتایج به سال:
در این مقاله با استفاده از نتایج آزمایشگاهی و شبیه سازی عددی صورت گرفته توسط نرم افزار فایر، مدل سازی آلاینده ها و همچنین میزان مصرف سوخت در یک موتور دیزل پاشش مستقیم با استفاده از شبکه عصبی انجام گرفته که ورودی مدل سازی، دمای هوای ورودی، جرم سوخت تزریق شده، تایمینگ تزریق سوخت، طول مدت تزریق، دور موتور و تایمینگ بسته شدن سوپاپ ورودی می باشد. سپس بر اساس مدل های بدست آمده برای خروجی های فوق، با ...
در این تحقیق از طریق مدل سازی در شبکه های عصبی مصنوعی، پیش بینی مقاومت بتن حاوی سنگ دانه های مختلف با استفاده از آزمون های غیرمخرب (آلتراسونیک) انجام شد. بدین منظور ابتدا مصالحی با ویژگی های متفاوت گردآوری و خواص آن ها در آزمایشگاه به روش های مخرب و غیرمخرب تعیین شده است. نکتۀ مهم این تحقیق، استفاده از سنگ دانه های مختلف با خواص فیزیکی، مکانیکی و شیمیایی متفاوت و هم چنین استفاده از دو آزمون غیر...
در این مقاله از ترکیب شبکههای عصبی موجک (WNNs) به همراه الگوریتم آموزش بهینهسازی انبوه ذرات (PSO) جهت مدلسازی تغییرات زمانی محتوای الکترون کلی (TEC) یون<st...
خشک کردن مواد غذایی به عنوان روشی جهت بهبود ماندگاری، ارائه شده است. به منظور پایش این فرایند از مدلهای مختلف شبکهی عصبی نظیر شبکهی عصبی پرسپترون، تابع پایهی شعاعی و مدل ترکیبی شبکهی عصبی و روش شناسی سطح پاسخ به همراه توابع فعال سازی مختلف به عنوان یک ابزار پیش بینی کنندهی پارامترهای خشک کردن کدوی سبز استفاده گردید. پارامترهای زمان خشک کردن، دمای هوای خشک کردن و ضخامت نمونه به عنوان ورودی...
چکیده شبکه های عصبی در دهه ی اخیر به عنوان ابزار قدرتمندی جهت پیش بینی در حوزه های مختلف مورد استفاده قرار گرفته اند. در این تحقیق از شبکه عصبی پیشخور پرسپترون چند لایه (mlp) با یادگیری پس انتشار از الگوریتم آموزش انتشار به عقب (bp)، با تکنیک بهینه سازی عددی لونبرگ- مارکوات (lm)،توسط نرم افزار متلب مورد استفاده قرار گرفت. درصد رطوبت کیک ، دمای پرس و زمان بسته شدن پرس به عنوان متغیرهای ورودی و خ...
در این پایان نامه، برآورد تابع رگرسیون یک یا چندین متغیر توضیحی را در نظر می گیریم به طوری که تابع رگرسیون به-صورت ترکیب خطی از خانواده ای از توابع پایه مدل سازی می شود. با توجه به این که شبکه عصبی تابع پایه شعاعی می تواند به صورت یک الگوی رگرسیون غیرخطی در نظر گرفته شود، آن را به عنوان برآورد تابع رگرسیون به کار می بریم. در واقع می خواهیم رگرسیون غیرخطی را برای داده هایی با ساختار پیچیده و نوی...
مطالعه حاضر به دنبال مدلسازی رابطه گوردون با استفاده از روش شبکه عصبی پیشخور برای تعدادی از شرکتهای پذیرفته شده در بورس اوراق بهادار تهران است. در این مطالعه به بررسی مدل گوردون با رویکرد غیرخطی و مقایسه آن با مدل خطی رگرسیون پرداخته شده است. بررسی مدل غیرخطی گوردون با استفاده از شبکه عصبی تاکنون در مطالعات مورد توجه قرار نگرفته است. در این پژوهش از اطلاعات 247 شرکت و تعداد 1135 مشاهده (ش...
در این مقاله، به منظور ارزیابی تأثیر دینامیک های آشوب گونه در افزایش کارایی شبکه های عصبی بازگشتی در بازشناسی مقاوم الگو، دو مدل برای شبکه های عصبی آشوب گونه ارائه شده است. در مدل اول که براساس نظریه انتخاب طبیعی طراحی گردیده است، شبکه عصبی بازگشتی جاذب (arnn) به عنوان هوش حاکم، تنوعات ایجاد شده توسط گره های آشوبی را در جهت رسیدن به جواب بهینه هدایت می نماید. در مدل دوم، ساختاری از شبکه عصبی آش...
آگاهی از میزان تقاضای انرژی برق در هر دوره، به منظور برنامه ریزی دقیق، برای اعمال سیاست گذاری های لازم، امری ضروری است. از این رو پیش بینی تقاضای آن برای بخش های مختلف اقتصادی حائز اهمیت است. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی، در زمینه تجزیه و تحلیل و مدل سازی روابط غیرخطی یکی از ابزار قدرتمند به حساب می آید که استفاده از آن در سال های اخیر در اقتصاد کلان گسترش یافته است. از ...
مقاله حاضر به بررسی نحوه عملکرد شبکههای عصبی MLP در ارتباط با خروجی مدل فوریه، FSAM، میپردازد. مدل FSAM که مدل شبیه ساز بارش است، تحلیل مدلهای کلاسیک را در قلمرو فرکانس، که توسعه نظریه طیفی فرآیندهای متداول نظیر طیف الگوهای ARIMA را در درون خود دارد، ارائه میدهد. کاربرد همزمان شبکههای عصبی MLP و مدلFSAM، امکان پیش بینی جریان ماه (i) ام را در ارتباط با پیش بینی بارش همان ماه، میسر میسازد...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید