نتایج جستجو برای: convolutional neural network
تعداد نتایج: 836773 فیلتر نتایج به سال:
Traditional recommendation systems rely on past usage data in order to generate new recommendations. Those approaches fail to generate sensible recommendations for new users and items into the system due to missing information about their past interactions. In this paper, we propose a solution for successfully addressing item-cold start problem which uses model-based approach and recent advance...
The workflow of extracting features from images using convolutional neural networks (CNN) and generating captions with recurrent neural networks (RNN) has become a de-facto standard for image captioning task. However, since CNN features are originally designed for classification task, it is mostly concerned with the main conspicuous element of the image, and often fails to correctly convey info...
Convolutional neural networks have recently been shown to outperform fully connected deep neural networks on several speech recognition tasks. Their superior performance is due to their convolutional structure that processes several, slightly shifted versions of the input window using the same weights, and then pools the resulting neural activations. This pooling operation makes the network les...
The classification of imbalanced datasets has recently attracted significant attention due to its implications in several real-world use cases. In such scenarios, the datasets have skewed class distributions while very few data instances are associated with certain classes. The classifiers developed on such datasets tend to favor the majority classes and are biased against the minority class. D...
Images captured in low-light conditions usually suffer from very low contrast, which increases the difficulty of subsequent computer vision tasks in a great extent. In this paper, a low-light image enhancement model based on convolutional neural network and Retinex theory is proposed. Firstly, we show that multi-scale Retinex is equivalent to a feedforward convolutional neural network with diff...
Article history: Received 27 April 2015 Received in revised form 8 June 2015 Accepted 8 June 2015 Available online 16 June 2015
Histopathological image classification is one of the most important steps for disease diagnosis. We proposed a method for multiclass histopathological image classification based on deep convolutional neural network referred to as coding network. It can gain better representation for the histopathological image than only using coding network. The main process is that training a deep convolutiona...
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
The success of sentence classification often depends on understanding both the syntactic and semantic properties of wordphrases. Recent progress on this task has been based on exploiting the grammatical structure of sentences but often this structure is difficult to parse and noisy. In this paper, we propose a structureindependent ‘Gated Representation Alignment’ (GRA) model that blends a phras...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید