نتایج جستجو برای: coreflective subcategory epireflective subcategory

تعداد نتایج: 1589  

2006
Richard Steiner RICHARD STEINER

The category of strict omega-categories has an important full subcategory whose objects are the simple omega-categories freely generated by planar trees or by globular cardinals. We give a simple description of this subcategory in terms of chain complexes, and we give a similar description of the opposite category, the category of finite discs, in terms of cochain complexes. Berger has shown th...

Journal: :Mathematical Structures in Computer Science 2009
Masahito Hasegawa

The structure theorem of Joyal, Street and Verity says that every traced monoidal category C arises as a monoidal full subcategory of the tortile monoidal category IntC. In this paper we focus on a simple observation that a traced monoidal category C is closed if and only if the canonical inclusion from C into IntC has a right adjoint. Thus, every traced monoidal closed category arises as a mon...

This paper presents the concepts of $(L,M)$-fuzzy Q-convergence spaces and stratified $(L,M)$-fuzzy Q-convergence spaces. It is shown that the category of stratified $(L,M)$-fuzzy Q-convergence spaces is a bireflective subcategory of the category of $(L,M)$-fuzzy Q-convergence spaces, and the former is a Cartesian-closed topological category. Also, it is proved that the category of stratified $...

2010
Rebecca M. Baker

In probability and statistics, uncertainty is usually quantified using single-valued probabilities satisfying Kolmogorov’s axioms. Generalisation of classical probability theory leads to various less restrictive representations of uncertainty which are collectively referred to as imprecise probability. Several approaches to statistical inference using imprecise probability have been suggested, ...

2011
Octavio Malherbe Philip J. Scott Peter Selinger

This paper deals with questions relating to Haghverdi and Scott’s notion of partially traced categories. The main result is a representation theorem for such categories: we prove that every partially traced category can be faithfully embedded in a totally traced category. Also conversely, every symmetric monoidal subcategory of a totally traced category is partially traced, so this characterize...

2006
M. A. Batanin

To the memory of my father. Abstract The classical Eckmann-Hilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of this argument in the language of higher categories is: suppo...

2013
Ahmet A. Husainov

This paper is devoted to connections between trace monoids and cubical sets. We prove that the category of trace monoids is isomorphic to the category of generalized tori and it is a reflective subcategory of the category of cubical sets. Adjoint functors between the categories of cubical sets and trace monoid actions are constructed. These functors carry independence preserving morphisms in th...

2012
Octavio Malherbe Philip J. Scott Peter Selinger

This paper deals with questions relating to Haghverdi and Scott’s notion of partially traced categories. The main result is a representation theorem for such categories: we prove that every partially traced category can be faithfully embedded in a totally traced category. Also conversely, every symmetric monoidal subcategory of a totally traced category is partially traced, so this characterize...

Journal: :Transactions of the American Mathematical Society 1969

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید