نتایج جستجو برای: generalized hyers ulam stability

تعداد نتایج: 461475  

Journal: :Advances in Difference Equations 2021

Abstract In this research work, a class of multi-term fractional pantograph differential equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered. The ensuing problem involves proportional type delay terms and constitutes subclass known as pantograph. On using fixed point theorems due Banach Schaefer, some sufficient are developed for the existence uniqueness solution...

Journal: :Journal of Inequalities and Applications 2022

Abstract A thermostat model described by a second-order fractional difference equation is proposed in this paper with one sensor and two sensors boundary conditions depending on positive parameters using the Lipschitz-type inequality. By means of well-known contraction mapping Brouwer fixed-point theorem, we provide new results existence uniqueness solutions. In work use Caputo operator Hyer–Ul...

Journal: :Mathematical Inequalities & Applications 2008

Binayak S. Choudhury, Nabin Chandra Kayal Parbati Saha Tapas Kumar Samanta

Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.

2015
H. AZADI KENARY H. KESHAVARZ C. PARK D. Y. SHIN

Let X ,Y are linear space. In this paper, we prove the generalized Hyers-Ulam stability of the following quartic equation n ∑ k=2 ( k ∑ i1=2 k+1 ∑ i2=i1+1 . . . n ∑ in−k+1=in−k+1 ) f ( n ∑ i=1,i =i1,...,in−k+1 xi − n−k+1 ∑ r=1 xir )

2008
M. Eshaghi Gordji S. Abbaszadeh M. Eshaghi

In this paper, we establish the general solution of the functional equation f(nx+ y) + f(nx− y) = nf(x+ y) + nf(x− y) + 2(f(nx)− nf(x))− 2(n − 1)f(y) for fixed integers n with n 6= 0,±1 and investigate the generalized Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces.

Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}

2005
John Michael Rassias Matina John Rassias David Eisenbud

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982–2005 we established the Hyers–Ulam stability for the Ulam problem of linear and nonlinear mappings. In 1998 S.-M. Jung and in 2002–2005 the authors of this paper investigated the Hyers–Ulam stability of additive ...

2008
M. Eshaghi Gordji

In this paper, we obtain the general solution and the generalized Hyers-Ulam Rassias stability of the functional equation f(2x+ y) + f(2x− y) = 4(f(x+ y) + f(x− y))− 3 7 (f(2y)− 2f(y)) + 2f(2x) − 8f(x).

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید