نتایج جستجو برای: quantale enriched category

تعداد نتایج: 141310  

Journal: :Applied Categorical Structures 2011
Michael Batanin Mark Weber

One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we begin to adapt the machinery of globular operads [1] to this task. We present a general construction of a tensor product on the category of n-globular sets from any normalised (n + 1)-operad A, in such a way that the algebras for A ma...

With the unit interval [0,1] as the truth value table, Chen and Wupresented the concept of  possibility computation over dcpos.Indeed, every possibility computation can be considered as a[0,1]-valued Scott open set on a dcpo. The aim of this paper is tostudy Chen-Wu's duality on quantale-valued setting. For clarity,with a commutative unital quantale $L$ as the truth value table, weintroduce a c...

2006
Solomon Feferman

Four requirements are suggested for an axiomatic system S to provide the foundations of category theory: (R1) S should allow us to construct the category of all structures of a given kind (without restriction), such as the category of all groups and the category of all categories; (R2) It should also allow us to construct the category of all functors between any two given categories including t...

Journal: :Computer Graphics Forum 2023

Event sequence visualization aids analysts in many domains to better understand and infer new insights from event data. Analysing behaviour before or after a certain of interest is common task scenarios. In this paper, we introduce, formally define, position double trees as domain-agnostic tree approach for task. The shows the sequences that led on left, those followed right. Moreover, our enab...

2004
STEFAN FORCEY

The most familiar example of higher, or vertically iterated enrichment is that in the definition of strict n-category. We begin with strict n-categories based on a general symmetric monoidal category V. Motivation is offered through a comparison of the classical and extended versions of topological quantum field theory. A sequence of categorical types that filter the category of monoidal catego...

2002
DAVID KRUML JAN PASEKA

In a recent paper [7], J. W. Pelletier and J. Rosický published a characterization of *-simple *-quantales. Their results were adapted for the case of simple quantales by J. Paseka in [5]. In this paper we present similar characterizations which do not use a notion of discrete quantale. We also show a completely new characterization based on separating and cyclic sets. Further we explain a link...

Journal: :Applied Categorical Structures 2015
Dirk Hofmann Frédéric Mynard Gavin J. Seal

Lax monoidal powerset-enriched monads yield a monoidal structure on the category of monoids in the Kleisli category of a monad. Exponentiable objects in this category are identified as those Kleisli monoids with algebraic structure. This result generalizes the classical identification of exponentiable topological spaces as those whose lattice of open subsets forms a continuous lattice.

Journal: :Applied Categorical Structures 2005
Isar Stubbe

Applying (enriched) categorical structures we define the notion of ordered sheaf on a quantaloid Q, which we call ‘Q-order’. This requires a theory of semicategories enriched in the quantaloid Q, that admit a suitable Cauchy completion. There is a quantaloid Idl(Q) of Q-orders and ideal relations, and a locally ordered category Ord(Q) of Q-orders and monotone maps; actually, Ord(Q) = Map(Idl(Q)...

2004
STEFAN FORCEY

Lyubashenko has described enriched 2–categories as categories enriched over V–Cat, the 2–category of categories enriched over a symmetric monoidal V. This construction is the strict analogue for V–functors in V–Cat of Brian Day’s probicategories for V–modules in V–Mod. Here I generalize the strict version to enriched n–categories for k–fold monoidal V. The latter is defined as by Balteanu, Fied...

2006
Robert Goldblatt

A structural semantics is developed for a first-order logic, with infinite disjunctions and conjunctions, that is characterised algebraically by quantales. The model structures involved combine the “covering systems” approach of Kripke-Joyal intuitionistic semantics from topos theory with the ordered groupoid structures used to model various connectives in substructural logics. The latter are u...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید