نتایج جستجو برای: signed total italian k dominating function

تعداد نتایج: 2284381  

2007
Ermelinda DeLaViña Douglas B. West

We limit our discussion to graphs that are simple and finite of order . Although 8 we often identify a graph with its set of vertices, in cases where we need to be K explicit we write . A set of vertices of is said to Z ÐKÑ Q K dominate K provided each vertex of is either in or adjacent to a vertex of . K Q Q The domination number of is the minimum order of a dominating set. A K dominating prov...

Journal: :Intelligent Information Management 2010
A. N. Ghameshlou Abdollah Khodkar Reza Saei Seyed Mahmoud Sheikholeslami

Let be a simple graph with vertex set and edge set . Let have at least vertices of degree at least , where and b are positive integers. A function is said to be a signed -edge cover of G if G ( ) V G ( ) e E v ( ) E G G : ( f E k b k ) { 1,1} G   ( , ) b k ( ) f e b    for at least vertices of , where . The value k v G ( ) = {uv E( ( ) E v G u N v   ) | } ( ) min ( ) G e E f e   , taki...

Journal: :Appl. Math. Lett. 2011
Dirk Meierling Seyed Mahmoud Sheikholeslami Lutz Volkmann

For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set {f1, f2, ....

Journal: :CoRR 2015
Yinglei Song

In this paper, we study the Dominating Set problem in random graphs. In a random graph, each pair of vertices are joined by an edge with a probability of p, where p is a positive constant less than 1. We show that, given a random graph in n vertices, a minimum dominating set in the graph can be computed in expected 2 2 2 n) time. For the parameterized dominating set problem, we show that it can...

Journal: :Discrete Mathematics 2006
Liying Kang Erfang Shan Lou Caccetta

A function f defined on the vertices of a graph G = (V ,E), f : V → {−1, 0, 1} is a total minus dominating function (TMDF) if the sum of its values over any open neighborhood is at least one. The weight of a TMDF is the sum of its function values over all vertices. The total minus domination number, denoted by −t (G), of G is the minimum weight of a TMDF on G. In this paper, a sharp lower bound...

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

2015
Ramy Shaheen

Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ( ) { } − : 1,1 f V D → is called a signed dominating function (SDF) if [ ] ( ) 1 D f N v − ≥ for each vertex v V ∈ . The weight ( ) f ω of f is defined by ( ) ∑ v V f v ∈ . The signed domination number of a digraph D is ( ) ( ) { } γ ω = min is an SDF of s D f f D . Let Cm × Cn denotes the cartesian produ...

A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...

Journal: :Inf. Process. Lett. 2008
Rodney G. Downey Michael R. Fellows Catherine McCartin Frances A. Rosamond

A problem open for many years is whether there is an FPT algorithm that given a graph G and parameter k, either: (1) determines that G has no k-Dominating Set, or (2) produces a dominating set of size at most g(k), where g(k) is some fixed function of k. Such an outcome is termed an FPT approximation algorithm. We describe some results that begin to provide some answers. We show that there is n...

Journal: :J. Comb. Optim. 2015
Lutz Volkmann

Let D be a finite and simple digraph with vertex set V (D) and arc set A(D). A signed Roman dominating function (SRDF) on the digraph D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑ x∈N−[v] f(x) ≥ 1 for each v ∈ V (D), where N −[v] consists of v and all inner neighbors of v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The w...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید