نتایج جستجو برای: bagging model
تعداد نتایج: 2105681 فیلتر نتایج به سال:
This paper describes a set of experiments with bagging – a method, which can improve results of classification algorithms. Our use of this method aims at classification algorithms generating decision trees. Results of performance tests focused on the use of the bagging method on binary decision trees are presented. The minimum number of decision trees, which enables an improvement of the classi...
Ensembles of classifiers are among the strongest classifiers in most data mining applications. Bagging ensembles exploit the instability of base-classifiers by training them on different bootstrap replicates. It has been shown that Bagging instable classifiers, such as decision trees, yield generally good results, whereas bagging stable classifiers, such as k-NN, makes little difference. Howeve...
Riassunto: Il Bagging è una tecnica di aggregazione, in cui uno stimatore viene ottenuto come media di predittori calcolati su campioni bootstrap. Gli alberi di decisione con il bagging quasi sempre migliorano il predittore originario, ed è opinione comune che l’efficacia del bagging sia dovuta alla riduzione della varianza. In questo lavoro mostriamo un contro-esempio e diamo evidenza sperimen...
هدف اصلی این پژوهش طراحی مدلی جهت پیشبینی مضیقه مالی شرکتهای صنعت فلزات اساسی، کانیهای غیرفلزی و ماشینآلات و تجهیزات با استفاده از مدل Bagging میباشد. همچنین سعی میگردد توانمندی این مدل از لحاظ دقت پیشبینی با مدلهای پیشیبینی درخت تصمیم و بیز نیز مقایسه گردد. جامعه آماری این پژوهش را کلیه شرکتهای هر یک از این صنایع تشکیل میدهد. معیار بکارگرفته شده برای تعیین مضیقه مالی شرکتها، ماده ...
In this paper, a new variant of Bagging named DepenBag is proposed. This algorithm obtains bootstrap samples at first. Then, it employs a causal discoverer to induce from each sample a dependency model expressed as a Directed Acyclic Graph (DAG). The attributes without connections to the class attribute in all the DAGs are then removed. Finally, a component learner is trained from each of the r...
As growing numbers of real world applications involve imbalanced class distribution or unequal costs for misclassification errors in different classes, learning from imbalanced class distribution is considered to be one of the most challenging issues in data mining research. This study empirically investigates the sensitivity of bagging predictors with respect to 12 algorithms and 9 levels of c...
In this paper, we apply the combination method of bagging which has been developed in the context of supervised learning of classifiers and regressors to the unsupervised artificial neural network known as the Self Organising Map. We show that various initialisation techniques can be used to create maps which are comparable by humans by eye. We then use a semi-supervised version of the SOM to c...
In previous researches it can been seen that Bagging, Boosting and Cross-Validation Committee can provide good performance separately. In this paper, Boosting methods are mixed with Bagging and Cross-Validation Committee in order to generate accurate ensembles and take benefit from all these alternatives. In this way, the networks are trained according to the boosting methods but the specific t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید