نتایج جستجو برای: signed roman edge k domination number
تعداد نتایج: 1600006 فیلتر نتایج به سال:
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
We investigate a domination-like problem from the exact exponential algorithms viewpoint. The classical Dominating Set problem ranges among one of the most famous and studied NP -complete covering problems [6]. In particular, the trivial enumeration algorithm of runtime O∗(2n) 4 has been improved to O∗(1.4864n) in polynomial space, and O∗(1.4689n) with exponential space [9]. Many variants of th...
Recently, Zhang et al. [6] obtained some lower bounds of the signed domination number of a graph. In this paper, we obtain some new lower bounds of the signed domination number of a graph which are sharper than those of them.
A signed dominating function of a graph G with vertex set V is a function f : V → {−1, 1} such that for every vertex v in V the sum of the values of f at v and at every vertex u adjacent to v is at least 1. The weight of f is the sum of the values of f at every vertex of V . The signed domination number of G is the minimum weight of a signed dominating function of G. In this paper, we study the...
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
Let (G) be the domination number of graph G, thus a graph G is k -edge-critical if (G) 1⁄4 k ; and for every nonadjacent pair of vertices u and v, (Gþ uv) 1⁄4 k 1. In Chapter 16 of the book ‘‘Domination in Graphs— Advanced Topics,’’ D. Sumner cites a conjecture of E. Wojcicka under the form ‘‘3-connected 4-critical graphs are Hamiltonian and perhaps, in general (i.e., for any k 4), (k 1)-connec...
The k-domination number γk(G) of a simple, undirected graph G is the order of a smallest subset D of the vertices of G such that each vertex of G is either in D or adjacent to at least k vertices in D. In 2010, the conjecture-generating computer program, Graffiti.pc, was queried for upperbounds on the 2-domination number. In this paper we prove new upper bounds on the 2-domination number of a g...
In this paper, we continue the study of power domination in graphs (see SIAM J. Discrete Math. 15 (2002), 519–529; SIAM J. Discrete Math. 22 (2008), 554–567; SIAM J. Discrete Math. 23 (2009), 1382–1399). Power domination in graphs was birthed from the problem of monitoring an electric power system by placing as few measurement devices in the system as possible. A set of vertices is defined to b...
A nonnegative signed dominating function (NNSDF) of a graph G is a function f from the vertex set V (G) to the set {−1, 1} such that ∑ u∈N [v] f(u) ≥ 0 for every vertex v ∈ V (G). The nonnegative signed domination number of G, denoted by γ s (G), is the minimum weight of a nonnegative signed dominating function on G. In this paper, we establish some sharp lower bounds on the nonnegative signed ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید