نتایج جستجو برای: called the v
تعداد نتایج: 16105411 فیلتر نتایج به سال:
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
a mapping $f:v^n longrightarrow w$, where $v$ is a commutative semigroup, $w$ is a linear space and $n$ is a positive integer, is called multi-additive if it is additive in each variable. in this paper we prove the hyers-ulam stability of multi-additive mappings in 2-banach spaces. the corollaries from our main results correct some outcomes from [w.-g. park, approximate additive mappings i...
Let $G=(V(G),E(G))$ be a graph, $gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$, respectively. A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$. In this paper, we show that if $G$ has a total perfect code, then $gamma_t(G)=ooir(G)$. As a consequence, ...
A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...
let $g=(v, e)$ be a graph with $p$ vertices and $q$ edges. an emph{acyclic graphoidal cover} of $g$ is a collection $psi$ of paths in $g$ which are internally-disjoint and cover each edge of the graph exactly once. let $f: vrightarrow {1, 2, ldots, p}$ be a bijective labeling of the vertices of $g$. let $uparrow!g_f$ be the directed graph obtained by orienting the...
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
what has been discussed here has been a study of international immigration law. this branch of law has not been a major player in the field of international law. no collective law exists, and no codification has been carried out as yet. however, the need for such a set of laws has forced the international community to pay more attention to this issue. the need for a better life in the so-call...
let $g=(v(g),e(g))$ be a graph, $gamma_t(g)$. let $ooir(g)$ be the total domination and oo-irredundance number of $g$, respectively. a total dominating set $s$ of $g$ is called a $textit{total perfect code}$ if every vertex in $v(g)$ is adjacent to exactly one vertex of $s$. in this paper, we show that if $g$ has a total perfect code, then $gamma_t(g)=ooir(g)$. as a consequence, ...
• Der Test von modellbasiert entwickelter Software bereits auf Modell-Ebene (z.B. Model-, bzw. Software-in-the-Loop). • Der Test von einzelnen Steuergeräten in einer Laborumgebung (z.B. Hardware-in-the-Loop einzelner Steuergeräte aus Sicht des OEM) • Der Test mehrerer Steuergeräte im Verbund (z.B. Hardware-in-the-Loop Prüfständen auf Integrationsebene) • Der Test von E&E-Komponenten direkt in F...
Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید