نتایج جستجو برای: co roman dominating function

تعداد نتایج: 1534157  

Journal: :Theor. Comput. Sci. 1994
Reinhard Diestel Imre Leader

We consider two infinite games, played on a countable graph G given with an integer vertex labelling. One player seeks to construct a ray (a one-way infinite path) in G, so that the ray’s labels dominate or elude domination by an integer sequence being constructed by another player. For each game, we give a structural characterization of the graphs on which one player or the other can win, prov...

Journal: :Appl. Math. Lett. 2005
Yaojun Chen T. C. Edwin Cheng C. T. Ng Erfang Shan

Let G = (V,E) be a graph. A subset S of V is called a dominating set if each vertex of V −S has at least one neighbor in S. The domination number γ(G) equals the minimum cardinality of a dominating set in G. A minus dominating function on G is a function f : V → {−1, 0, 1} such that f(N [v]) = ∑ u∈N [v] f(u) ≥ 1 for each v ∈ V , where N [v] is the closed neighborhood of v. The minus domination ...

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

2008
Belinda N. Akpeng Frank Hanson

Title of Presentation Name of Student Author, Co-Investigator, Co-Investigator Student presenter names are in bold. Non-presenting co-investigators are not in bold All investigators are assumed to be from UMBC unless otherwise noted. Faculty mentor name, rank, and department are shown on a new line, in roman type. If the mentor is not from UMBC, an institution name is given. The body of the abs...

Journal: :Functiones et Approximatio Commentarii Mathematici 2005

Journal: :etudes de langue et littérature francaises 2011
massoud nazridoust

etant donné le rapport réciproque entre la société et la littérature, et vu la dominance extraordinaire du roman, à l'état actuel, sur les autres expressions littéraires, on ne peut s'empêcher de s'interroger sur la cause et l'origine de la primauté du genre romanesque. certes, le roman ne date pas du xixe siècle; il est l'un des héritages des siècles précédents. néanmoins, son déploiement est ...

2013
Jason S. Adams Jonathan Singer Sharada Shantharam Jorge Sodero Miguel Guerrero Angelica P. Herrera

Title of Presentation Name of Student Author, Co-Investigator, Co-Investigator Name of mentor, rank of mentor, department of mentor Student presenter names are in bold. Non-presenting co-investigators are not in bold All investigators are assumed to be from UMBC unless otherwise noted. Mentor information is shown below author information, in roman type. If the mentor is not from UMBC, an instit...

Journal: :Discrete Applied Mathematics 2008
Erfang Shan T. C. Edwin Cheng Liying Kang

A function f : V (G) → {+1,−1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number γs(G) of G is the minimum weight of a signed dominating function on G. By simply changing “{+1,−1}” in the above definition to “{+1, 0,−1}”, we can define the minus dominating f...

2015
Baogen XU

Let G = (V,E) be a simple graph. For any real function g : V −→ R and a subset S ⊆ V , we write g(S) = ∑ v∈S g(v). A function f : V −→ [0, 1] is said to be a fractional dominating function (FDF ) of G if f(N [v]) ≥ 1 holds for every vertex v ∈ V (G). The fractional domination number γf (G) of G is defined as γf (G) = min{f(V )|f is an FDF of G }. The fractional total dominating function f is de...

Journal: :Discrete Mathematics 1996
Jean E. Dunbar Stephen T. Hedetniemi Michael A. Henning Alice A. McRae

A three-valued function f defined on the vertices of a graph G = (V,E), f : V , ( 1 , 0 , 1), is a minus dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every v E V, f(N[v])>~ 1, where N[v] consists of v and every vertex adjacent to v. The weight of a minus dominating function is f ( V ) = ~ f (v) , over all vertices v E V. The mi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید