نتایج جستجو برای: layer perceptron network

تعداد نتایج: 919520  

2015
Nisha Vasudeva

Advancement in Artificial Intelligence has lead to the developments of various “smart” devices. The task of face Recognition has been actively researched in recent years. Wide usage of biometric information for person identity verification purposes, terrorist acts prevention measures and authentication process simplification in computer systems has raised significant attention to reliability an...

Journal: :CoRR 2016
Peter O'Connor Max Welling

We introduce an algorithm to do backpropagation on a spiking network. Our network is "spiking" in the sense that our neurons accumulate their activation into a potential over time, and only send out a signal (a “spike”) when this potential crosses a threshold and the neuron is reset. Neurons only update their states when receiving signals from other neurons. Total computation of the network thu...

2006
Marieta Gâta

The research presented in this paper is based on the artificial neural networks recognition paradigm applied to Romanian isolated word recognition. The network, which is composed by three layer (a Multilayer Perceptron), is trained by conventional Back-propagation algorithm. The ANN speech recognition system based on Mel Frequency Cepstral Coefficients was developed using Matlab toolkit. The sy...

1995
Aleksander Malinowski Tomasz J. Cholewo Jacek M. Zurada

This paper proposes a multilevel logic approach to output coding using multilevel neurons in the output layer. Training convergence for a single multilevel perceptron is considered. It has been found that a multilevel neural network classifier with a reduced number of outputs is often able to learn faster and requires fewer weights. Concepts are illustrated with an example of a digit classifier.

     One of the natural disasters that occurs in abundance in Iran, due to the geological structure, morphological and seismic conditions, and damages the lives and property of people is a landslide. Roodbar Alamoot watershed in the east of Qazvin province is a mountainous region with a high potential for occurrence of landslides. Because of their active status, there is also a growing trend of...

Journal: :iranian journal of public health 0
m parsaeian k mohammad m mahmoudi h zeraati

background: the purpose of this investigation was to compare empirically predictive ability of an artificial neu­ral network with a logistic regression in prediction of low back pain. methods: data from the second national health survey were considered in this investigation. this data in­cludes the information of low back pain and its associated risk factors among iranian people aged 15 years a...

1996
Frans M. Coetzee Virginia L. Stonick

A globally convergent homotopy method is deened that is capable of sequentially producing large numbers of stationary points of the multi-layer perceptron mean-squared error surface. Using this algorithm large subsets of the stationary points of two test problems are found. It is shown empirically that the MLP neural network appears to have an extreme ratio of saddle points compared to local mi...

2003
Masoud Ghaffari Ernest L. Hall

The purpose of this paper is to demonstrate a new benchmark for comparing the rate of convergence in neural network classification algorithms. The benchmark produces datasets with controllable complexity that can be used to test an algorithm. The dataset generator uses the concept of random numbers and linear normalization to generate the data. In a case of a one-layer perceptron, the output da...

Journal: :CoRR 2016
Tom Bosc

Meta-learning consists in learning learning algorithms. We use a Long Short Term Memory (LSTM) based network to learn to compute on-line updates of the parameters of another neural network. These parameters are stored in the cell state of the LSTM. Our framework allows to compare learned algorithms to hand-made algorithms within the traditional train and test methodology. In an experiment, we l...

1994
Il Song Han Ki-Chul Kim Hwang-Soo Lee

Ki-Chul Kim Dept. of Info and Comm KAIST Seoul, 130-012, Korea This paper describes a way of neural hardware implementation with the analog-digital mixed mode neural chip. The full custom neural VLSI of Universally Reconstructible Artificial Neural network (URAN) is used to implement Korean speech recognition system. A multi-layer perceptron with linear neurons is trained successfully under the...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید