نتایج جستجو برای: fuzzy development is anfis adaptive neuro

تعداد نتایج: 7932936  

2016
Ashwani Kharola

The objective of this study is to present an offline control of highly non-linear inverted pendulum system moving on a plane inclined at an angle of 10° from horizontal. The stabilisation was achieved using three different soft-computing control techniques i.e. Proportional-integral-derivative (PID), Fuzzy logic and Adaptive neuro fuzzy inference system (ANFIS). A Matlab-Simulink model of the p...

2014
Sang-Hyun Lee Sang-Joon Lee Kyung-Il Moon

Several models have been created for Smart Grid resource-allocation problem. The principal purpose of the models is to connect power sources with appropriate sinks when considering the input parameters of power balance and consumption size, etc. Fuzzy logic is representative of these models. When creating the fuzzy model, the parameters and rule construction play the most significant role. For ...

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

Journal: :JILSA 2010
K. Naga Sujatha K. Vaisakh

A new speed control approach based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) to a closed-loop, variable speed induction motor (IM) drive is proposed in this paper. ANFIS provides a nonlinear modeling of motor drive system and the motor speed can accurately track the reference signal. ANFIS has the advantages of employing expert knowledge from the fuzzy inference system and the learni...

Ali Hosseinzadeh Dalir Hadi Sanikhani Milad Abdolahpour

Sedimentation in reservoirs is an important issue that should be considered for the reservoirs operation and useful life. In this study, application of the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) in prediction of the sediment release from the bottom outlet using semi-cylinder for different variables was evaluated. Dimensionless parameters such as dimens...

2016
A. Suruliandi

Texture features play a predominant role in land cover classification of remotely sensed images. In this study, for extracting texture features from data intensive remotely sensed image, Gabor wavelet has been used. Gabor wavelet transform filters frequency components of an image through decomposition and produces useful features. For classification of fuzzy land cover patterns in the remotely ...

2011
Himanshu Chaudhary Rajendra Prasad

In this paper, an Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design an Inverse Kinematic based controller forthe inverse kinematical control of SCORBOT-ER V Plus. The proposed ANFIS controller combines the advantages of a fuzzy controller as well as the quick response and adaptability nature of an Artificial Neural Network (AN...

2009
Z. Dideková S. Kajan

This paper deals problem of intelligent hybrid systems. Intelligent systems include neural networks (NN), fuzzy systems (FS) and genetic algorithms (GA). Each of these intelligent systems has certain properties (ability of learning, modelling, classifying, obtaining empirical rules, solving optimizing tasks ...) fitting specific kind of applications. Combination of these intelligent systems cre...

2014
A. Rezaeifar A. Dehghani Tafti

This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS). The control structure of the purposed consists fuzzy logic to damp the low frequency oscillations of power system and neuro identifier to track the dynamic behavior of the plant. In practical for damping of disturbance in the power system, Automatic Voltage Controller (AVR) is used. To develop this controller a...

2008
Muhammad Zubair Shafiq Muddassar Farooq Syed Ali Khayam

Worms spread by scanning for vulnerable hosts across the Internet. In this paper we report a comparative study of three classification schemes for automated portscan detection. These schemes include a simple Fuzzy Inference System (FIS) that uses classical inductive learning, a Neural Network that uses back propagation algorithm and an Adaptive Neuro Fuzzy Inference System (ANFIS) that also emp...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید