نتایج جستجو برای: permutation operator

تعداد نتایج: 109307  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه 1389

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

2002
Claudia Malvenuto Francesco Pappalardi

Let C be a conjugation class of permutations of a finite field Fq. We consider the function NCðqÞ defined as the number of permutations in C for which the associated permutation polynomial has degree 5q 2. In 1969, Wells proved a formula for N1⁄23 ðqÞ where 1⁄2k denotes the conjugation class of k-cycles. We will prove formulas for N1⁄2k ðqÞ where k 1⁄4 4; 5; 6 and for the classes of permutation...

2000
Moni Naor Omer Reingold

We show how to onstru t pseudo-random permutations that satisfy a ertain y le restri tion, for example that the permutation be y li ( onsisting of one y le ontaining all the elements) or an involution (a self-inverse permutation) with no xed points. The onstru tion an be based on any (unrestri ted) pseudo-random permutation. The resulting permutations are de ned su in tly and their evaluation a...

Journal: :Linear Algebra and its Applications 2021

Two distinct projections of finite rank m are adjacent if their difference is an operator two or, equivalently, the intersection images (m−1)-dimensional. We extend this adjacency relation on other conjugacy classes finite-rank self-adjoint operators which leads to a natural generalization Grassmann graphs. Let C be class formed by with eigenspaces dimension greater than 1. Under assumption tha...

Journal: :J. Comb. Theory, Ser. A 2007
Einar Steingrímsson Lauren K. Williams

Lauren Williams (joint work with Einar Steingrímsson) We introduce and study a class of tableaux which we call permutation tableaux; these tableaux are naturally in bijection with permutations, and they are a distinguished subset of the " Le-diagrams " of Alex Postnikov. The structure of these tableaux is in some ways more transparent than the structure of permutations; therefore we believe tha...

‎In this short note‎, ‎we present some inequalities for relative operator entropy which are generalizations of some results obtained by Zou [Operator inequalities associated with Tsallis relative operator entropy‎, ‎{em Math‎. ‎Inequal‎. ‎Appl.}‎ ‎{18} (2015)‎, ‎no‎. ‎2‎, ‎401--406]‎. ‎Meanwhile‎, ‎we also show some new lower and upper bounds for relative operator entropy and Tsallis relative o...

Journal: :Finite Fields and Their Applications 2004
Claudia Malvenuto Francesco Pappalardi

We consider the function m[k](q) that counts the number of cycle permutations of a finite field Fq of fixed length k such that their permutation polynomial has the smallest possible degree. We prove the upper–bound m[k](q) ≤ (k−1)!(q(q−1))/k for char(Fq) > e(k−3)/e and the lower–bound m[k](q) ≥ φ(k)(q(q−1))/k for q ≡ 1 (mod k). This is done by establishing a connection with the Fq–solutions of ...

Journal: :Finite Fields and Their Applications 2009
Robert S. Coulter Marie Henderson Rex W. Matthews

Let H be a subgroup of the multiplicative group of a finite field. In this note we give a method for constructing permutation polynomials over the field using a bijective map from H to a coset of H. A similar, but inequivalent, method for lifting permutation behaviour of a polynomial to an extension field is also given.

‎In this work‎, ‎a regular polygon with $n$ sides is described by a periodic (circular) sequence with period $n$‎. ‎Each element of the sequence represents a vertex of the polygon‎. ‎Each symmetry of the polygon is the rotation of the polygon around the center-point and/or flipping around a symmetry axis‎. ‎Here each symmetry is considered as a system that takes an input circular sequence and g...

2000
RUDOLF WINKEL R. WINKEL

It is well known that a Schur function is the ‘limit’ of a sequence of Schur polynomials in an increasing number of variables, and that Schubert polynomials generalize Schur polynomials. We show that the set of Schubert polynomials can be organized into sequences, whose ‘limits’ we call Schubert functions. A graded version of these Schubert functions can be computed effectively by the applicati...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید