نتایج جستجو برای: r multiplication module

تعداد نتایج: 532066  

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...

Journal: :bulletin of the iranian mathematical society 2011
m. aghapournahr a. taherizadeh a. vahidi

let $r$ be a commutative noetherian ring with non-zero identity, $fa$ an ideal of $r$, and $x$ an $r$--module. here, for fixed integers $s, t$ and a finite $fa$--torsion $r$--module $n$, we first study the membership of $ext^{s+t}_{r}(n, x)$ and $ext^{s}_{r}(n, h^{t}_{fa}(x))$ in the serre subcategories of the category of $r$--modules. then, we present some conditions which ensure the exi...

We introduce and study the concept of $alpha $-semi short modules.Using this concept we extend some of the basic results of $alpha $-short modules to $alpha $-semi short modules.We observe that if $M$ is an $alpha $-semi short module then the dual perfect dimension of $M$ is $alpha $ or $alpha +1$.%In particular, if a semiprime ring $R$ is $alpha $-semi short as an $R$-module, then its Noetheri...

Journal: :Journal of Biological Chemistry 2006

An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...

In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...

Journal: :علوم 0
عبدالجواد طاهری زاده abdoljavad taherizadeh mofateh- ave. no.43 tarbia moallem universityتهران - خیابان شهید مفتح - شماره 43 دانشگاه تربیت معلم اکرم کیانژاد akram kianejad دانشگاه شاهرود ابوالفضل تهرانیان a tehranian دانشگاه آزاد اسلامی واحد علوم و تحقیقات

let ( r,m ) be a noetherian local ring, a an ideal of r and m a finitely generated r- module. we investigate some properties of formal local cohomology modules with respect to a serre subcategory. we provide a common language to indicate some properties of formal local cohomology modules. let ( r,m ) be a noetherian local ring, a an ideal of r and m a finitely generated r- module. we investigat...

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

Journal: :علوم 0
عبدالجواد طاهری زاده abdoljavad taherizadeh دانشگاه تربیت معلم

let r be a commutative ring with non-zero identity and m be a unital r-module. then the concept of quasi-secondary submodules of m is introduced and some results concerning this class of submodules is obtained

2015
Rory Laster

a. N1 = {(i1, i2, . . . , in) : ik ∈ Ik for all k ∈ {1, 2, . . . , n}} and b. N2 = {(x1, x2, . . . , xn) : ∑n k=1 xk = 0}. Proof. To prove (a), it suffices to show, by Proposition 1, that N1 is nonempty and x + ry ∈ N1 for all r ∈ R and all x, y ∈ N1. For the first condition, (0, 0, . . . , 0) ∈ N1 since Ik is a subgroup of R containing the additive identity 0 for all k ∈ {1, 2, . . . , n}. Tha...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید