نتایج جستجو برای: convex subgroup
تعداد نتایج: 139532 فیلتر نتایج به سال:
In this paper we show the weak Banach-Saks property of the Banach vector space (L p µ) m generated by m L p µ-spaces for 1 ≤ p < +∞, where m is any given natural number. When m = 1, this is the famous Banach-Saks-Szlenk theorem. By use of this property, we also present inequalities for integrals of functions that are the composition of nonnegative continuous convex functions on a convex set of ...
Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of R [9]. If C has five or more faces, Andreev’s Theorem states that the corresponding space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andre...
where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing. If E∗ is strictly convex, then J is single valued. In the sequel, we will denote the single-value duality mapping by j. Let C be a nonempty closed convex subset of E. Recall that a self-mapping f : C → C is said to be a contraction if there exists a constant δ ∈ 0, 1 such that ∥f x − f y ∥∥ ≤ δ‖x − y‖, ∀x, ...
We study finite groups that occur as combinatorial automorphism or geometric symmetry of convex polytopes. When $\Gamma$ is a subgroup the group $d$-polytope, $d\geq 3$, then there exists $d$-polytope related to original polytope with exactly $\Gamma$. both and These symmetry-breaking results are applied show for every abelian even order involution $\sigma$ $\Gamma$, centrally symmetric such co...
let $x$ be a real normed space, then $c(subseteq x)$ is functionally convex (briefly, $f$-convex), if $t(c)subseteq bbb r $ is convex for all bounded linear transformations $tin b(x,r)$; and $k(subseteq x)$ is functionally closed (briefly, $f$-closed), if $t(k)subseteq bbb r $ is closed for all bounded linear transformations $tin b(x,r)$. we improve the krein-milman theorem ...
Associated to a convex integral polygon $N$ is cluster integrable system $\mathcal X\_N$ constructed from the dimer model. We compute group $G\_N$ of symmetries X\_N$, called (2-2) modular group, showing that it certain abelian conjectured by Fock and Marshakov. Combinatorially, non-torsion elements are ways shuffling underlying bipartite graph, generalizing domino-shuffling. Algebro-geometrica...
We study a properly convex real projective manifold with (possibly empty) compact, strictly convex boundary, and which consists of a compact part plus finitely many convex ends. We extend a theorem of Koszul which asserts that for a compact manifold without boundary the holonomies of properly convex structures form an open subset of the representation variety. We also give a relative version fo...
We consider the intersection of pairs of subgroups of a Kleinian group of the second kind K whose limit sets intersect, where one subgroup G is analytically finite and the other J is geometrically finite, possibly infinite cyclic. In the case that J is infinite cyclic generated by M , we show that either some power of M lies in G or there is a doubly cusped parabolic element Q of G with the sam...
In this paper, fuzzy convergence theory in the framework of $L$-convex spaces is introduced. Firstly, the concept of $L$-convex remote-neighborhood spaces is introduced and it is shown that the resulting category is isomorphic to that of $L$-convex spaces. Secondly, by means of $L$-convex ideals, the notion of $L$-convergence spaces is introduced and it is proved that the category of $L$-con...
Inthispaper, (L,M)-fuzzy domain finiteness and (L,M)-fuzzy restricted hull spaces are introduced, and several characterizations of the category (L,M)-CS of (L,M)-fuzzy convex spaces are obtained. Then, (L,M)-fuzzy stratified (resp. weakly induced, induced) convex spaces are introduced. It is proved that both categories, the category (L,M)-SCS of (L,M)-fuzzy stratified convex spaces and the cate...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید