نتایج جستجو برای: deep seq2seq network

تعداد نتایج: 847003  

Journal: :CoRR 2016
Xichuan Zhou Shengli Li Kai Qin Kunping Li Fang Tang Shengdong Hu Shujun Liu Zhi Lin

—Deep neural networks are state-of-the-art models for understanding the content of images, video and raw input data. However, implementing a deep neural network in embedded systems is a challenging task, because a typical deep neural network, such as a Deep Belief Network using 128×128 images as input, could exhaust Giga bytes of memory and result in bandwidth and computing bottleneck. To addre...

Journal: :محیط شناسی 0
حمید زارع ابیانه دانشگاه بوعلی سینا ، استادیار گروه مهندسی آب دانشکدة کشاورزی مریم بیات ورکشی دانشگاه بوعلی سینا ، دانش آموخته کارشناسی ارشد آبیاری و زهکشی دانشکدة کشاورزی سمیرا اخوان دانشگاه بوعلی سینا، استادیار گروه مهندسی آب دانشکدة کشاورزی محمد محمدی دانشگاه بوعلی سینا، کارشناس آبیاری

information on nitrate in groundwater resources requires periodic measurements are accurate. despite the measure in some areas due to sensitive social and health community are not reported. therefore, be informed of the status of each area of water quality, modeling is essential. the purpose of this study was the application of artificial neural network method for estimating nitrate and compare...

2015
Xiaoming Zhang Xia Hu Zhoujun Li

Image location prediction is to estimate the geolocation where an image is taken. Social image contains heterogeneous contents, which makes image location prediction nontrivial. Moreover, it is observed that image content patterns and location preferences correlate hierarchically. Traditional image location prediction methods mainly adopt a single-level architecture, which is not directly adapt...

Journal: :IEEE Journal of Selected Topics in Signal Processing 2020

Journal: :IEEE Transactions on Pattern Analysis and Machine Intelligence 2020

Journal: :International Journal of Computer Applications 2016

Journal: :IEEE Transactions on Information Theory 2021

This paper develops fundamental limits of deep neural network learning by characterizing what is possible if no constraints are imposed on the algorithm and amount training data. Concretely, we consider Kolmogorov-optimal approximation through networks with guiding theme being a relation between complexity function (class) to be approximated approximating in terms connectivity memory requiremen...

Journal: :CoRR 2016
Jingdong Wang Zhen Wei Ting Zhang Wenjun Zeng

In this paper, we present a novel deep learning approach, deeply-fused nets. The central idea of our approach is deep fusion, i.e., combine the intermediate representations of base networks, where the fused output serves as the input of the remaining part of each base network, and perform such combinations deeply over several intermediate representations. The resulting deeply fused net enjoys s...

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

One of the problems of the banking system is cash demand forecasting for ATMs (Automated Teller Machine). The correct prediction can lead to the profitability of the banking system for the following reasons and it will satisfy the customers of this banking system. Accuracy in this prediction are the main goal of this research. If an ATM faces a shortage of cash, it will face the decline of bank...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید