نتایج جستجو برای: k tuple total restrained domination number

تعداد نتایج: 2141912  

Journal: :International Journal of Computer Applications 2012

Journal: :Acta Universitatis Sapientiae, Mathematica 2020

Journal: :Journal of Physics: Conference Series 2021

Journal: :Rairo-operations Research 2021

For a graph $G=(V(G),E(G))$, an Italian dominating function (ID function) $f:V(G)\rightarrow\{0,1,2\}$ has the property that for every vertex $v\in V(G)$ with $f(v)=0$, either $v$ is adjacent to assigned $2$ under $f$ or least two vertices $1$ $f$. The weight of ID $\sum_{v\in V(G)}f(v)$. domination number minimum taken over all functions $G$. In this paper, we initiate study variant functions....

Let $kge 1$ be an integer, and let $G$ be a finite and simple graph with vertex set $V(G)$.A weak signed Roman $k$-dominating function (WSRkDF) on a graph $G$ is a function$f:V(G)rightarrow{-1,1,2}$ satisfying the conditions that $sum_{xin N[v]}f(x)ge k$ for eachvertex $vin V(G)$, where $N[v]$ is the closed neighborhood of $v$. The weight of a WSRkDF $f$ is$w(f)=sum_{vin V(G)}f(v)$. The weak si...

Journal: :transactions on combinatorics 2012
b basavanagoud sunilkumar m hosamani

a dominating set $d subseteq v$ of a graph $g = (v,e)$ is said to be a connected cototal dominating set if $langle d rangle$ is connected and $langle v-d rangle neq phi$, contains no isolated vertices. a connected cototal dominating set is said to be minimal if no proper subset of $d$ is connected cototal dominating set. the connected cototal domination number $gamma_{ccl}(g)$ of $g$ is the min...

2010
S. M. Sheikholeslami L. Volkmann

Let k ≥ 1 be an integer, and let D = (V, A) be a finite and simple digraph in which dD(v) ≥ k for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total k-dominating function (STkDF) if f(N−(v)) ≥ k for each vertex v ∈ V . The weight w(f) of f is defined by w(f) = ∑ v∈V f(v). The signed total k-domination number for a digraph D is γ kS(D) = min{w(f) | f is a STkDF of D}. In this paper...

For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...

Journal: :International Journal of Engineering Science, Advanced Computing and Bio-Technology 2018

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید