نتایج جستجو برای: unbounded distributive lattice
تعداد نتایج: 109886 فیلتر نتایج به سال:
We describe n-generated free MV -algebras as MV-algebras having the lattice reduct which is a direct limit in the category of distributive lattices.
Brouwerian ordered sets generalize Brouwerian lattices. The aim of this paper is to characterize α-complete Brouwerian ordered sets in a manner similar to that used previously for pseudocomplemented, Stone, Boolean and distributive ordered sets. The sublattice G(P ) in the Dedekind-Mac Neille completion DM(P ) of an ordered set P generated by P is said to be the characteristic lattice of P . We...
A modular semilattice is a semilattice S in which w > a A ft implies that there exist i,jeS such that x > a. y > b and x A y = x A w. This is equivalent to modularity in a lattice and in the semilattice of ideals of the semilattice, and the condition implies the Kurosh-Ore replacement property for irreducible elements in a semilattice. The main results provide extensions of the classical charac...
Based on a completely distributive lattice $M$, base axioms and subbase axioms are introduced in $M$-fuzzifying convex spaces. It is shown that a mapping $mathscr{B}$ (resp. $varphi$) with the base axioms (resp. subbase axioms) can induce a unique $M$-fuzzifying convex structure with $mathscr{B}$ (resp. $varphi$) as its base (resp. subbase). As applications, it is proved that bases and subbase...
In this paper, we define a property, trimness, for lattices. Trimness is a not-necessarily-graded generalization of distributivity; in particular, if a lattice is trim and graded, it is distributive. Trimness is preserved under taking intervals and suitable sublattices. Trim lattices satisfy a weakened form of modularity. The order complex of a trim lattice is contractible or homotopic to a sph...
We consider the stable marriage problem where participants are permitted to express indifference in their preference lists (i.e., each list can be partially ordered). We prove that, in an instance where indifference takes the form of ties, the set of strongly stable matchings forms a distributive lattice. However, we show that this lattice structure may be absent if indifference is in the form ...
Stonean residuated lattices are closely related to Stone algebras since the bounded lattice reduct of a distributive Stonean residuated lattice is a Stone algebra. In the present work we follow the ideas presented by Chen and Grätzer and try to apply them for the case of Stonean residuated lattices. Given a Stonean residuated lattice, we consider the triple formed by its Boolean skeleton, its a...
a heyting algebra is a distributive lattice with implication and a dual $bck$-algebra is an algebraic system having as models logical systems equipped with implication. the aim of this paper is to investigate the relation of heyting algebras between dual $bck$-algebras. we define notions of $i$-invariant and $m$-invariant on dual $bck$-semilattices and prove that a heyting semilattice is equiva...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید