نتایج جستجو برای: lax wendroff method
تعداد نتایج: 1632728 فیلتر نتایج به سال:
در این مقاله حل عددی جریان تراکمپذیر، گذرا، غیر لزج، دو فاز و حدود صوت حاوی شوک مخلوط بخار و آب در یک نازل همگرا-واگرا با روش عددی Roe بررسی شد. برای گسستهسازی مکانی و محاسبه خواص اصلی جریان در مرز المانها این خواص با دقت مرتبه سوم Roe برونیابی شده است، همچنین انتگرالگیری زمانی با استفاده از روشصریح دو مرحلهای لکس – وندرف[i] با دقت مرتبه دوم انجام شده است. برای ناحیه خشک (تک فاز)، خواص ا...
Compact Approximate Taylor (CAT) methods for systems of conservation laws were introduced by Carrillo and Pares in 2019. These methods, based on a strategy that allows one to extend high-order Lax-Wendroff nonlinear without using the Cauchy-Kovalevskaya procedure, have arbitrary even order accuracy 2p use (2p + 1)-point stencils, where p is an positive integer. More recently 2021 Carrillo, Macc...
We further investigate the high order positivity-preserving discontinuous Galerkin (DG) methods for linear hyperbolic and radiative transfer equations developed in [14]. The DG methods in [14] can maintain positivity and high order accuracy, but they rely both on the scaling limiter in [15] and a rotational limiter, the latter may alter cell averages of the unmodulated DG scheme, thereby affect...
We show that a recently introduced Lax pair of the Sawada-Kotera equation is nota new one but is trivially related to the known old Lax pair. Using the so-called trivialcompositions of the old Lax pairs with a differentially constrained arbitrary operators,we give some examples of trivial Lax pairs of KdV and Sawada-Kotera equations.
In this paper, we propose a high order residual distribution conservative finite difference scheme for solving convection– diffusion equations on non-smooth Cartesian meshes. WENO (weighted essentially non-oscillatory) integration and linear interpolation for the derivatives are used to compute the numerical fluxes based on the point values of the solution. The objective is to obtain a high ord...
Gas-kinetic schemes based on the BGK model are proposed as an alternative evolution model which can cure some of the limitations of current Riemann solvers. To analyse the schemes, simple advection equations are reconstructed and solved using the gas-kinetic BGK model. Results for gas-dynamic application are also presented. The ®nal ̄ux function derived in this model is a combination of a gas-ki...
Given a pseudomonad $mathcal{T} $ on a $2$-category $mathfrak{B} $, if a right biadjoint $mathfrak{A}tomathfrak{B} $ has a lifting to the pseudoalgebras $mathfrak{A}tomathsf{Ps}textrm{-}mathcal{T}textrm{-}mathsf{Alg} $ then this lifting is also right biadjoint provided that $mathfrak{A} $ has codescent objects. In this paper, we give general results on lifting of biadjoints. As a consequence, ...
we show that a recently introduced lax pair of the sawada-kotera equation is nota new one but is trivially related to the known old lax pair. using the so-called trivialcompositions of the old lax pairs with a differentially constrained arbitrary operators,we give some examples of trivial lax pairs of kdv and sawada-kotera equations.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید