نتایج جستجو برای: pabon lasso model

تعداد نتایج: 2106796  

Journal: :CoRR 2012
Samuel Vaiter Charles-Alban Deledalle Gabriel Peyré Mohamed-Jalal Fadili Charles Dossal

In this paper, we are concerned with regression problems where covariates can be grouped in nonoverlapping blocks, and where only a few of them are assumed to be active. In such a situation, the group Lasso is an attractive method for variable selection since it promotes sparsity of the groups. We study the sensitivity of any group Lasso solution to the observations and provide its precise loca...

2017
Wei JIANG

According to the article[2], we present a new method for post-selection inference for l1(lasso)penalized likelihood models, including generalized regression models. Our approach generalizes the post-selection framework presented in Lee et al. (2013)[1]. The method provides P-values and confidence intervals that are asymptotically valid, conditional on the inherent selection done by the lasso. W...

2016
Monica M. Vasquez Chengcheng Hu Denise J. Roe Zhao Chen Marilyn Halonen Stefano Guerra

BACKGROUND The study of circulating biomarkers and their association with disease outcomes has become progressively complex due to advances in the measurement of these biomarkers through multiplex technologies. The Least Absolute Shrinkage and Selection Operator (LASSO) is a data analysis method that may be utilized for biomarker selection in these high dimensional data. However, it is unclear ...

2014
MING YUAN

We congratulate the authors for an interesting article and an innovative proposal to testing the significance of the predictor variables selected by the Lasso. There is much material for thought and exploration. Research on high-dimensional regression has been very active in recent years, but most of the efforts have so far focused on estimation. Despite the popularity of the Lasso as a variabl...

2007
GARETH M. JAMES PETER RADCHENKO

The Dantzig selector (Candes and Tao, 2007) is a new approach that has been proposed for performing variable selection and model fitting on linear regression models. It uses an L1 penalty to shrink the regression coefficients towards zero, in a similar fashion to the Lasso. While both the Lasso and Dantzig selector potentially do a good job of selecting the correct variables, several researcher...

2009
Martin Slawski Wolfgang zu Castell Gerhard Tutz Sylvia Lawry

In generalized linear regression problems with an abundant number of features, lasso-type regularization which imposes an `-constraint on the regression coefficients has become a widely established technique. Crucial deficiencies of the lasso were unmasked when Zhou and Hastie (2005) introduced the elastic net. In this paper, we propose to extend the elastic net by admitting general nonnegative...

ژورنال: اندیشه آماری 2021

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

Journal: :Statistics in medicine 2007
Chenlei Leng Shuangge Ma

As a flexible alternative to the Cox model, the additive risk model assumes that the hazard function is the sum of the baseline hazard and a regression function of covariates. For right censored survival data when variable selection is needed along with model estimation, we propose a path consistent model selector using a modified Lasso approach, under the additive risk model assumption. We sho...

سیستم‌های BCI مبتنی­بر SSVEP به­دلیل مزایایی چون سرعت انتقال اطلاعات بالا، نسبت بالای سیگنال به نویز و راحتی کاربران در استفاده از آن‌ها، توجه بسیاری از محققان را به خود جلب کرده­اند. هدف پردازشی در این سیستم‌ها، شناسایی فرکانس ظاهر­شده در سیگنال EEG کاربر است. از میان روش‌های پردازشی مختلفی که برای شناسایی فرکانس در سیستم‌های BCI مبتنی­بر SSVEP استفاده می­شوند، روش LASSO با استقبال فراوانی همر...

Journal: :Statistics in medicine 2013
Qixuan Chen Sijian Wang

Multiple imputation (MI) is a commonly used technique for handling missing data in large-scale medical and public health studies. However, variable selection on multiply-imputed data remains an important and longstanding statistical problem. If a variable selection method is applied to each imputed dataset separately, it may select different variables for different imputed datasets, which makes...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید