نتایج جستجو برای: various neural network and fuzzy logic models established for neural network and fuzzy logic
تعداد نتایج: 19232728 فیلتر نتایج به سال:
Fuzzy neural networks (FNNs) provide a new approach for classification of multispectral data and to extract and optimize classification rules. Neural networks deal with issues on a numeric level, whereas fuzzy logic deals with them on a semantic or linguistic level. FNNs synthesize fuzzy logic and neural networks. Recently, there has been growing interest in the research community not only to u...
This chapter maps out the development of the PSO based Functional Link Interval Type-2 Fuzzy Neural System (FLIT2FNS) model used to forecast the stock market indices. In the process, it discusses the architecture of Functional Link Artificial Neural Network (FLANN), FLANN & Type-1Fuzzy Logic System (Type1FLS) and the differences between Type-1FLS and Interval Type-2 Fuzzy Logic System (IT2FLS)....
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
The major aim of processing satellite images is to prepare topical and effectivemaps. The selection of appropriate classification methods plays an important role. Amongvarious methods existing for image classification, artificial neural network method is ofhigh accuracy. In present study, TM images of 1987, and ETM+ images of 2000 and 2006were analyzed using artificial fuzzy ARTMAP neural netwo...
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. We consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. Here neural network is considered as a part of large eld called neural computing or soft computing. The proposed algorithm is illustrated by numerical examples and the result...
In this paper we presented an architecture and basic learning process underlying in fuzzy inference system and adaptive neuro fuzzy inference system which is a hybrid network implemented in framework of adaptive network. In real world computing environment, soft computing techniques including neural network, fuzzy logic algorithms have been widely used to derive an actual decision using given i...
A neural network can approximate a function, but it is impossible to interpret the result in terms of natural language. The fusion of neural networks and fuzzy logic in neurofuzzy models provide learning as well as readability. Control engineers find this useful, because the models can be interpreted and supplemented by process operators.
Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید