نتایج جستجو برای: volterra integral inclusion
تعداد نتایج: 245665 فیلتر نتایج به سال:
We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.
In this paper, we will present a review of the multistep collocation method for Delay Volterra Integral Equations (DVIEs) from [1] and then, we study the superconvergence analysis of the multistep collocation method for DVIEs. Some numerical examples are given to confirm our theoretical results.
The qualitative and quantitative analyses of numerical methods delay differential equations (DDEs) are now quite well understood, as reflected in the recent monograph by Bellen and Zennaro (2003). This is in remarkable contrast to the situation in the numerical analysis of more general Volterra functional equations in which delays occur in connection with memory terms described by Volterra inte...
the main purpose of this article is to present an approximate solution for the two-dimensional nonlinear volterra integral equations using legendre orthogonal polynomials. first, the two-dimensional shifted legendre orthogonal polynomials are defined and the properties of these polynomials are presented. the operational matrix of integration and the product operational matrix are introduced. th...
In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.
In this paper, existence theorems for the fuzzy Volterra-Fredholm integral equations of mixed type (FVFIEMT) involving fuzzy number valued mappings have been investigated. Then, by using Banach's contraction principle, sufficient conditions for the existence of a unique solution of FVFIEMT are given. Finally, illustrative examples are presented to validate the obtained results.
Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.
In 1982, Dubois and Prade [4, 5] first introduced the concept of integration of fuzzy functions. Kaleva [7] studied the measurability and integrability for the fuzzy set-valued mappings of a real variable whose values are normal, convex, upper semicontinuous, and compactly supported by fuzzy sets in Rn. Existence of solutions of fuzzy integral equations has been studied by several authors [1, 2...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید