نتایج جستجو برای: induced pluripotent stem cells
تعداد نتایج: 2212149 فیلتر نتایج به سال:
Understanding the molecular foundations of embryonic stem cell (ESC) self-renewal and pluripotency will facilitate therapeutic exploitation of these remarkable cells. Here we discuss the emerging roles of microRNAs in the establishment and maintenance of ESC identity and summarize our current understanding of the mechanisms controlling microRNA expression and function in ESCs.
We read with much interest the recently published article, “Induced pluripotent stem cells in research and therapy,” by Teoh et al. The review described current methods of reprogramming and the potential of iPSC applications in medicine. This review encourages the exploration of reprogramming technology in Malaysia, and is helpful to both clinicians and stem cell researchers. We wish to share a...
The process of 'cell reprogramming' can be achieved by somatic cell nuclear transfer, cell fusion with embryonic stem cells, exposure to stem cell extracts, or by inducing pluripotentcy mediated by defined factors giving rise to what are termed induced pluripotent stem cells. More recently, the fate of a somatic cell can be directly induced to uptake other cell fates, termed lineage-specific re...
It has been suggested that the transcription factor Nanog is essential for the establishment of pluripotency during the derivation of embryonic stem cells and induced pluripotent stem cells (iPSCs). However, successful reprogramming to pluripotency with a growing list of divergent transcription factors, at ever-increasing efficiencies, suggests that there may be many distinct routes to a plurip...
The genetic reprogramming technology allows one to generate pluripotent stem cells for individual patients. These cells, called induced pluripotent stem cells (iPSCs), can be an unlimited source of specialized cell types for the body. Thus, autologous somatic cell replacement therapy becomes possible, as well as the generation of in vitro cell models for studying the mechanisms of disease patho...
The potential clinical applications of human induced pluripotent stem cells (hiPSCs) are limited by genetic and epigenetic variations among hiPSC lines and the question of their equivalency with human embryonic stem cells (hESCs). We used MethylScreen technology to determine the DNA methylation profile of pluripotency and differentiation markers in hiPSC lines from different source cell types c...
Human induced pluripotent stem cells (hiPSCs) generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs), as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern ...
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) possess the potential to become all cell and tissue types of the human body. Under chemically defined culture systems, hESCs and hiPSCs have been efficiently directed to functional spinal motoneurons and astrocytes. The differentiation process faithfully recapitulates the developmental process predicted from st...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید