نتایج جستجو برای: artificial neural network asphaltene

تعداد نتایج: 1026901  

Journal: :computational methods in civil engineering 2011
a. shahjouei g. ghodrati amiri

through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (aeas) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...

Journal: :iranian journal of chemistry and chemical engineering (ijcce) 2006
mahmoud mousavi akram avami

an artificial neural network has been used to determine the volume flux and rejections of ca2+ , na+ and cl¯, as a function of transmembrane pressure and concentrations of ca2+, polyethyleneimine, and polyacrylic acid in water softening by nanofiltration process in presence of polyelectrolytes. the feed-forward multi-layer perceptron artificial neural network including an eight-neuron hidden la...

Journal: :فیزیک زمین و فضا 0
علیرضا حاجیان مربی، گروه فیزیک، دانشگاه آزاد اسلامی واحد نجف آباد، ایران وحید ابراهیم زاده اردستانی دانشیار، گروه فیزیک زمین، مؤسسة ژئوفیزیک دانشگاه تهران و قطب علمی مهندسی نقشه برداری و مقابله با سوانح طبیعی، تهران، ایران کار لوکاس استاد، دانشکده برق وکامپیوتر دانشگاه تهران وقطب علمی کنترل وپردازش هوشمند ،تهران،ایران

the method of artificial neural network is used as a suitable tool for intelligent interpretation of gravity data in this paper. we have designed a hopfield neural network to estimate the gravity source depth. the designed network was tested by both synthetic and real data. as real data, this artificial neural network was used to estimate the depth of a qanat (an underground channel) located at...

سید علی عظیمی محسن شفیعی نیک آبادی

Abstract—the purpose of this paper is to compare two artificial intelligence algorithms for forecasting supply chain demand. In first step data are prepared for entering into forecasting models. In next step, the modeling step, an artificial neural network and support vector machine is presented. The structure of artificial neural network is selected based on previous researchers' results. For ...

Journal: :journal of optimization in industrial engineering 2010
marjan niyati amir masud eftekhari moghadam

estimating the final price of products is of great importance. for manufacturing companies proposing a final price is only possible after the design process over. these companies propose an approximate initial price of the required products to the customers for which some of time and money is required. here using the existing data of already designed transformers and utilizing the bayesian anal...

In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...

Journal: :محیط زیست طبیعی 0
منصوره کارگر دانشکده منابع طبیعی دانشگاه علوم کشاورزی و منابع طبیعی ساری زینب جعفریان دانشیار دانشگاه علوم کشاورزی و منابع طبیعی ساری

natural fire inflicting irreparable damage to rangelands and forest areas is cause changes in landscape ecology. the purpose of this research is comparison of artificial neural network (ann) and line regression (lr) models to predict of forest and rangelands fires to this end, the data consist fire burned area and fire were used weather data over a period of 7 years (2006-2012(.the result indic...

Journal: :international journal of data envelopment analysis 2014
s. dolatabadi h. rezai zhiani

the paper deals with data envelopment analysis (dea) and artificial neural network (ann). we believe that solving for the dea efficiency measure, simultaneously with neural network model, provides a promising rich approach to optimal solution. in this paper, a new neural network model is used to estimate the inefficiency of dmus in large datasets.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز 1378

در سالیان اخیر توجه زیادی روی موضوع تشخیص خطا در واحدهای مختلف شیمیائی بوسیله روشهای مختلف شده است . که یکی از این روشها شبکه های عصبی می باشد که شامل سه مرحله، آموزش ، بازخوانی و عمومیت بخشیدن می باشد. در این مقاله با استفاده از شبکه های عصبی مصنوعی (network artificial neural) از نوع (rbf)radial basis function و (bp) backpropagation خطاهای ایجاد شده در برج تقطیر تشخیص داده می شود. جهت آموزش اب...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید