نتایج جستجو برای: bipartite divisor graph
تعداد نتایج: 207482 فیلتر نتایج به سال:
Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$, if no two vertices of $S$ are adjacent.The independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.
For a commutative semigroup S with 0, the zero-divisor graph of S denoted by &Gamma(S) is the graph whose vertices are nonzero zero-divisor of S, and two vertices x, y are adjacent in case xy = 0 in S. In this paper we study median and center of this graph. Also we show that if Ass(S) has more than two elements, then the girth of &Gamma(S) is three.
در این پایان نامه ما، گراف کلاس های هم ارزی مقسوم علیه های صفر یک حلقه جابجایی r را مطالعه می کنیم. در ادامه چگونگی دریافت اطلاعاتی درباره حلقه r از این ساختار را نشان می دهیم. به ویژه چگونگی شناسایی اول وابسته های حلقه r را به کمک گراف کلاس های هم ارزی مقسوم علیه های صفر آن تعیین می کنیم. ایده اصلی این پایان نامه از مقاله s. spiroff, c. wickham, a zero divisor graph determind by equivalence...
let $g=(v,e)$ be a simple graph. a set $ssubseteq v$ isindependent set of $g$, if no two vertices of $s$ are adjacent.the independence number $alpha(g)$ is the size of a maximumindependent set in the graph. in this paper we study and characterize the independent sets ofthe zero-divisor graph $gamma(r)$ and ideal-based zero-divisor graph $gamma_i(r)$of a commutative ring $r$.
let $r$ be a ring with unity. the undirected nilpotent graph of $r$, denoted by $gamma_n(r)$, is a graph with vertex set ~$z_n(r)^* = {0neq x in r | xy in n(r) for some y in r^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in n(r)$, or equivalently, $yx in n(r)$, where $n(r)$ denoted the nilpotent elements of $r$. recently, it has been proved that if $r$ is a left ar...
Let R be a commutative ring with nonzero identity and let I be an ideal of R. The zero-divisor graph of R with respect to I, denoted by ΓI(R), is the graph whose vertices are the set {x ∈ R \ I| xy ∈ I for some y ∈ R \ I} with distinct vertices x and y adjacent if and only if xy ∈ I. In the case I = 0, Γ0(R), denoted by Γ(R), is the zero-divisor graph which has well known results in the literat...
Let $R$ be a commutative ring and $I$ an ideal of $R$. The zero-divisor graph of $R$ with respect to $I$, denoted by $Gamma_I(R)$, is the simple graph whose vertex set is ${x in Rsetminus I mid xy in I$, for some $y in Rsetminus I}$, with two distinct vertices $x$ and $y$ are adjacent if and only if $xy in I$. In this paper, we state a relation between zero-divisor graph of $R$ with respec...
the annihilating-ideal graph of a commutative ring $r$ is denoted by $ag(r)$, whose vertices are all nonzero ideals of $r$ with nonzero annihilators and two distinct vertices $i$ and $j$ are adjacent if and only if $ij=0$. in this article, we completely characterize rings $r$ when $gr(ag(r))neq 3$.
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید