نتایج جستجو برای: convolutional neural networks

تعداد نتایج: 641320  

Abbasi Asl, Reza, Kamali, Fatemeh, Menhaj, Mohamad Bagher , Suratgar, Amir Abolfazl ,

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

2013
Tae-Jun Kim Dongsu Zhang Joon Shik Kim

Convolutional neural networks are known to be effective in learning complex image classification tasks. However, how to design the architecture or complexity of the network structure requires a more quantitative analysis of the architecture design. In this paper, we study the effect of model complexity on generalization capability of the convolutional neural networks on large-scale, real-life d...

2017
Zhilin Yang Yang Zou

Convolutional neural networks (CNNs) are biologically-inspired variants of multi-layer perceptrons (MLPs). In biology, a visual cortex contains a complex arrangement of cells. These cells are sensitive to small subregions of the visual field. Inspired by the structure of visual cortices and cells, the notion of receptive fields and local filters are introduced as a core component of convolution...

Journal: :CoRR 2015
Lili Mou Hao Peng Ge Li Yan Xu Lu Zhang Zhi Jin

This paper proposes a new convolutional neural architecture based on treestructures, called the tree-based convolutional neural network (TBCNN). Two variants take advantage of constituency trees and dependency trees, respectively, to model sentences. Compared with traditional “flat” convolutional neural networks (CNNs), TBCNNs explore explicitly sentences’ structural information; compared with ...

2016
Congyue Wang

Deep convolutional neural networks comprise a subclass of deep neural networks (DNN) with a constrained architecture that leverages the spatial and temporal structure of the domain they model. Convolutional networks achieve the best predictive performance in areas such as speech and image recognition by hierarchically composing simple local features into complex models. We try to apply the conv...

2016
Zewang Zhang Zheng Sun Jiaqi Liu Jingwen Chen Zhao Huo Xiao Zhang

A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, w...

, ,

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

2017
Yuchen Zhang Percy Liang Martin J. Wainwright

We describe the class of convexified convolutional neural networks (CCNNs), which capture the parameter sharing of convolutional neural networks in a convex manner. By representing the nonlinear convolutional filters as vectors in a reproducing kernel Hilbert space, the CNN parameters can be represented as a low-rank matrix, which can be relaxed to obtain a convex optimization problem. For lear...

2014
William Chan Ian Lane

Recently, deep Convolutional Neural Networks have been shown to outperform Deep Neural Networks for acoustic modelling, producing state-of-the-art accuracy in speech recognition tasks. Convolutional models provide increased model robustness through the usage of pooling invariance and weight sharing across spectrum and time. However, training convolutional models is a very computationally expens...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید