نتایج جستجو برای: doped tio2 nanoparticles
تعداد نتایج: 168986 فیلتر نتایج به سال:
in order to improve uv and visible lights photocatalytic activities of the pure anatase tio2, a novel and efficient n-doped tio2 photocatalyst was prepared by sol-gel method. n-doped titania is prepared using triethylamine (with difference molar ratios) as the nitrogen source. the crystalline structure, morphology, particle size, absorbance and band-gap and chemical structure of n-doped tio2 wa...
we have performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped tio2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. we have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
objective(s): first-principles calculations have been carried out to investigate the interaction of aspirin molecule with nitrogen-doped tio2 anatase nanoparticles using the density functional theory method in order to fully exploit the biosensing capabilities of tio2 particles. methods: for this purpose, we have mainly studied the adsorption of the aspirin molecule on the fivefold coordinated ...
Density functional theory calculations were performed to investigate vitamin C interaction withN-doped TiO2 anatase nanoparticles. The adsorption of vitamin C on the energy favorable fivefoldcoordinated titanium sites was investigated. Various adsorption geometries of vitamin C towardsthe nanoparticle were examined. Since the adsorption energies of N-doped nanoparticles are higherthan those of ...
Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-dopi...
In this paper, MgB2 bulks were prepared with doped TiO2 nanoparticles surface-modified by 5-10% SiO2. Quantitative X-ray diffraction (XRD) analysis was performed to obtain the weight fraction of impurities using the Rietveld method. The effects of addition of TiO2/SiO2 nanoparticles on the critical temperature (Tc), the upper critical field (Hc2), and the irreversibility field (Hirr) as a funct...
Semiconductor photocatalysis has been intensively studied in recent decades for a wide variety of application such as hydrogen production from water splitting and water and air treatment. The majority of photocatalysts are, however, wide band-gap semiconductors which are active only under UV irradiation. In order to effectively utilize visible solar radiation, this thesis investigates various t...
Background and purpose: Sonocatalytic process as an advanced oxidation process is considered for degradation of pollutants in aqueous solution. The aim of this study was to increase the removal of dye by doping of TiO2 with non-metal element such as nitrogen. Materials and methods: Un-doped and N-doped TiO2 nano-particles with different nitrogen contents were synthesized by a simple sol–gel me...
Backgrounds and Objectives: Phenol and phenolic compounds are widely used in industry and daily liFe, and are of high interest due to stability in the environment, dissolution ability in water and health problems. In this regard, phenol removal from water is of high importance. The purpose of this study was to investigate the efficiency of photodegradation process for removal of phenol from aqu...
Here we report a novel method for modifying commercially available TiO2 nanoparticles by a microwave-induced plasma technique. After the plasma treatment TiO2 nanoparticles showed enhanced visible absorption due to the doped W atoms, and the photocatalytic methylene blue degradation above 440 nm was successfully improved.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید