نتایج جستجو برای: jordan delta double derivation

تعداد نتایج: 338083  

Journal: :bulletin of the iranian mathematical society 2011
s. hejazian t. l. shatery

Journal: :international journal of nonlinear analysis and applications 2010
f. rostami s. a. r. hosseinioun

using fixed pointmethods, we investigate approximately higher ternary jordan derivations in banach ternaty algebras via the cauchy functional equation$$f(lambda_{1}x+lambda_{2}y+lambda_3z)=lambda_1f(x)+lambda_2f(y)+lambda_3f(z)~.$$

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1377

in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1374

we have devided the thesis in to five chapters. the first recollects facts from purely algebraic theory of jordan algebras and also basic properties of jb and jb* - algebras which are needed in the sequel. in the second chapter we extend to jb* - algebras, a classical result due to cleveland [8]. this result shows shows the weakness of jb* - norm topology on a jb* - algebera. in chapter three, ...

Let $mathfrak{A}$ be an algebra. A linear mapping $delta:mathfrak{A}tomathfrak{A}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{A}$. Given two derivations $delta$ and $delta'$ on a $C^*$-algebra $mathfrak A$, we prove that there exists a derivation $Delta$ on $mathfrak A$ such that $deltadelta'=Delta^2$ if and only if either $delta'=0$ or $delta=sdel...

Journal: :bulletin of the iranian mathematical society 2011
s. chakraborty a. c. paul

Journal: :Hacettepe journal of mathematics and statistics 2023

Let $R$ be a ring and $Z(R)$ the center of $R.$ The aim this paper is to define notions centrally extended Jordan derivations $\ast$-derivations, prove some results involving these mappings. Precisely, we that if $2$-torsion free noncommutative prime admits derivation (resp. $\ast$-derivation) $\delta:R\to R$ such that\[[\delta(x),x]\in Z(R)~~(resp.~~[\delta(x),x^{\ast}]\in Z(R))\text{ for all ...

Let A be a unital R-algebra and M be a unital A-bimodule. It is shown that every Jordan derivation of the trivial extension of A by M, under some conditions, is the sum of a derivation and an antiderivation.

begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}

Journal: :international journal of nonlinear analysis and applications 0
khalil ekrami department of mathematics, payame noor university madjid mirzavaziri department of pure mathematics and center of excellence in analysis on algebraic struc-tures (ceaas), ferdowsi university of mashhad hamid reza ebrahimi vishki department of pure mathematics and center of excellence in analysis on algebraic struc-tures (ceaas), ferdowsi university of mashhad,

let $mathfrak{a}$ be an algebra. a linear mapping $delta:mathfrak{a}tomathfrak{a}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{a}$. given two derivations $delta$ and $delta'$ on a $c^*$-algebra $mathfrak a$, we prove that there exists a derivation $delta$ on $mathfrak a$ such that $deltadelta'=delta^2$ if and only if either $delta'=0$...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید