نتایج جستجو برای: kernel function
تعداد نتایج: 1252534 فیلتر نتایج به سال:
This note focuses on estimating the quantile function based on the kernel smooth estimator under a truncated dependent model. The Bahadurtype representation of the kernel smooth estimator is established, and from the Bahadur representation it can be seen that this estimator is strongly consistent.
<span id="docs-internal-guid-10508d4e-7fff-5011-7a0e-441840e858c8"><span>This paper compares the fuzzy kernel k-medoids using radial basis function (RBF) and polynomial in hepatitis classification. These two functions were chosen due to their popularity any kernel-based machine learning method for solving classification task. The dataset then used evaluate performance of both method...
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
in this research, a first order markov chain model was applied to simulate soil salinity in nine standard depths and 10 classes in the cultivated pistachio areas of ardakan city. transition probability matrix, kernel and uniform distribution were used to simulate 500000 soil profiles. results indicate kernel function could reproduce soil salinity values with statistical criteria (i.e. mean, sta...
kernel density estimators are the basic tools for density estimation in non-parametric statistics. the k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. in this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید