نتایج جستجو برای: lattice valued semiuniform convergence spaces
تعداد نتایج: 363105 فیلتر نتایج به سال:
Semiuniform convergence spaces form a common generalization of lter spaces (including symmetric convergence spaces and thus symmetric topological spaces] as well as Cauchy spaces) and uniform limit spaces (including uniform spaces) with many convenient properties such as cartesian closedness, hereditariness and the fact that products of quotients are quotients. Here, for each semiuniform conver...
In this paper we provide a common framework for different stratified $LM$-convergence spaces introduced recently. To this end, we slightly alter the definition of a stratified $LMN$-convergence tower space. We briefly discuss the categorical properties and show that the category of these spaces is a Cartesian closed and extensional topological category. We also study the relationship of our cat...
we develop a theory of stratified $lm$-filters which generalizes the theory of stratified $l$-filters. our stratification condition explicitly depends on a suitable mapping between the lattices $l$ and $m$. if $l$ and $m$ are identical and the mapping is the identity mapping, then we obtain the theory of stratified $l$-filters. based on the stratified $lm$-filters, a general theory of lattice-v...
A Stone-Weierstraß type theorem for semiuniform convergence spaces is proved. It implies the classical Stone-Weierstraß theorem as well as a Stone-Weierstraß type theorem for filter spaces due to Bentley, Hušek and Lowen-Colebunders [1].
We develop a theory of stratified $LM$-filters which generalizes the theory of stratified $L$-filters. Our stratification condition explicitly depends on a suitable mapping between the lattices $L$ and $M$. If $L$ and $M$ are identical and the mapping is the identity mapping, then we obtain the theory of stratified $L$-filters. Based on the stratified $LM$-filters, a general theory of lattice-v...
It is proved that for every continuous lattice there is a unique semiuniform structure generating both the order and the Lawson topology. The way below relation can be characterized with this uniform structure. These results are used to extend many of the analytical properties of real-valued l.s.c. functions to l.s.c. functions with values in a continuous lattice. The results of this paper have...
We define a regularity axiom for lattice-valued convergence spaces where the lattice is a complete Heyting algebra. To this end, we generalize the characterization of regularity by a ”dual form” of a diagonal condition. We show that our axiom ensures that a regular T1-space is separated and that regularity is preserved under initial constructions. Further we present an extension theorem for a c...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید