نتایج جستجو برای: two dimensional nonlinear fuzzy fredholm integral equations of the second kind
تعداد نتایج: 22968109 فیلتر نتایج به سال:
In this paper, we use the parametric form of fuzzy numbers, and aniterative approach for obtaining approximate solution for a classof fuzzy nonlinear Fredholm integral equations of the second kindis proposed. This paper presents a method based on Newton-Cotesmethods with positive coefficient. Then we obtain approximatesolution of the fuzzy nonlinear integral equations by an iterativeapproach.
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
in this paper, we present a numerical method for solving nonlinear fredholm and volterra integral equations of the second kind which is based on the use of haar wavelets and collocation method. we use properties of block pulse functions (bpf) for solving volterra integral equation. numerical examples show efficiency of the method.
The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method. Numerical tests for demo...
in this paper, existence theorems for the fuzzy volterra-fredholm integral equations of mixed type (fvfiemt) involving fuzzy number valued mappings have been investigated. then, by using banach's contraction principle, sufficient conditions for the existence of a unique solution of fvfiemt are given. finally, illustrative examples are presented to validate the obtained results.
I n recent years, many numerical methods have been proposed for solving fuzzy linear integral equations. For example, in [10], the authors used the divided differences and finite differences methods for solving a parametric of the fuzzy Fredholm integral equations of the second kind. Also, in [9], a numerical method is proposed for the approximate solution of fuzzy linear Fredholm functional in...
T The nonlinear and linear Volterra-Fredholm ordinary integral equations arise from various physical and biological models. The essential features of these models are of wide applicable. These models provide an important tool for modeling a numerous problems in engineering and science [6, 7]. Modelling of certain physical phenomena and engineering problems [8, 9, 10, 11, 12] leads to two-dimens...
The main purpose of this article is to demonstrate the use of the two Dimensional Walsh and Haar functions with Operational Matrix for solving nonlinear Volterra-Fredholm integral equations. The approximate solution is represented in the form of series. The approximate solution is obtained by two Dimensional Walsh and Haar series. The operational matrix and direct method for solving the linear ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید