نتایج جستجو برای: egsnrc
تعداد نتایج: 222 فیلتر نتایج به سال:
AIM To investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness. METHODS Clinical kV photon beams (105 and 220 k...
An extendable x-ray multi-leaf collimator (eMLC) is investigated for collimation of electron beams on a linear accelerator. The conventional method of collimation using an electron applicator is impractical for conformal, modulated and mixed beam therapy techniques. An eMLC would allow faster, more complex treatments with potential for reduction in dose to organs-at-risk and critical structures...
Background and purpose: The human body is composed of various inhomogenous tissues with a variety of physical and radiological properties. These inhomogeneities could change isodose distributions, increase the probability of geometric errors, and eventually lead to missing of the target irradiation or incorrect isodose coverage in conformal radiation therapy (CRT) due to the uncertainties resul...
Purpose: To investigate the energy dependence/spectral sensitivity of silicon diodes designed for small-field dosimetry and obtain response factors (RFs) for arbitrary photon spectra using Monte Carlo (MC) simulations. Methods: The EGSnrc user-code DOSRZnrc was used to calculate the dose deposition in water and in the active volume of a stereotactic diode f...
Introduction: Previous studies have shown that a Monte Carlo method for the transportations photon beam in medical linear accelerator is a good way. Strip of simulation can be used to measure the dose distribution in phantoms and patients' body. EGSnrc Code is the only code written for use in the field of radiation therapy that has many subset codes that BEAMnrc code is an impo...
Purpose: All present dosimetry protocols recommend well-guarded parallelplate ion chambers for electron dosimetry. For the guard-less Markus chamber, an energy dependent fluence perturbation correction pcav is given. This perturbation correction was experimentally determined by van der Plaetsen by comparison of the read-out of a Markus and a NACP chamber, which was assumed to be “perturbation-f...
PURPOSE Model-baseddose calculations (MBDCs) are performed using patient computed tomography (CT) data for patients treated with intraoperative125 I lung brachytherapy at the Mayo Clinic Rochester. Various metallic artifact correction and tissue assignment schemes are considered and their effects on dose distributions are studied. Dose distributions are compared to those calculated under TG-43 ...
The goal of this study was to investigate small field output factors (OFs) for flat-tening filter-free (FFF) beams on a dedicated stereotactic linear accelerator-based system. From this data, the collimator exchange effect was quantified, and detector-specific correction factors were generated. Output factors for 16 jaw-collimated small fields (from 0.5 to 2 cm) were measured using five differe...
This study investigates the dosimetric dependence of the dimension of a lead (Pb) layer for shielding using clinical electron beams with different energies. Monte Carlo simulations were used to generate phase space files of the 4, 9 and 16 MeV electron beams produced by a Varian 21 EX linear accelerator using the EGSnrc-based BEAMnrc code, and validated by measurements using films. Pb layers wi...
The purpose of bowtie filters in CT scanners is to homogenize the x-ray intensity measured by the detectors in order to improve the image quality and at the same time to reduce the dose to the patient because of the preferential filtering near the periphery of the fan beam. For CT dosimetry, especially for Monte Carlo calculations of organ and tissue absorbed doses to patients, it is important ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید