نتایج جستجو برای: fredholm integral equation

تعداد نتایج: 334381  

2015
DongYun Shen Yong Huang

This paper discusses the eigenvalue problem of second-order Sturm-Liouville equation. We transform the governing differential equation to the Fredholm-Volterra integral equation with appropriate end supports. By expanding the unknown function into the shifted Chebyshev polynomials, we directly get the corresponding polynomial characteristic equations, where the lower and higher-order eigenvalue...

1989
Dun-Sung Tang

Analytic solutions to the information-theoretic evolution equation of the connection strength of a three-layer feedforward neural net for visual information processing are presented. The results are (1) the receptive fields of the feature-analysing cells correspond to the eigenvector of the maximum eigenvalue of the Fredholm integral equation of the first kind derived from the evolution equatio...

2016
Monireh Nosrati Sahlan Hamid Reza Marasi

In this study, an effective technique upon compactly supported semi orthogonal cubic Bspline wavelets for solving nonlinear Volterra-Fredholm integral equations is proposed. Properties of B-spline wavelets and function approximation by them are first presented and the exponential convergence rate of the approximation, Ο(2 -4j ), is proved. For solving the nonlinear Volterra-Fredholm integral eq...

2010
R. E. SCRATON

If the solution of an integral equation can be expanded in the form of a Chebyshev series, the equation can be transformed into an infinite set of algebraic equations in which the unknowns are the coefficients of the Chebyshev series. The algebraic equations are solved by standard iterative procedures, in which it is not necessary to determine beforehand how many coefficients are significant. T...

2009
N. Parandin M. A. Fariborzi Araghi

in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples. Keywor...

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2003
Donald J Kouri Amrendra Vijay

The most robust treatment of the inverse acoustic scattering problem is based on the reversion of the Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach to inversion is the radius of convergence of the Born-Neumann series for Fredholm integral kernels, and especially for acoustic scattering for which the interaction depends on the square of the...

2012
A. G. Ramm

Inverse scattering problem is discussed for the Maxwell’s equations. A reduction of the Maxwell’s system to a new Fredholm second-kind integral equation with a scalar weakly singular kernel is given for electromagnetic (EM) wave scattering. This equation allows one to derive a formula for the scattering amplitude in which only a scalar function is present. If this function is small (an assumpti...

2013
K. Krishnaveni K. Kannan S. Raja Balachandar

Abstract— A new polynomial method to solve Volterra–Fredholm Integral equations is presented in this work. The method is based upon Shifted Legendre Polynomials. The properties of Shifted Legendre Polynomials and together with Gaussian integration formula are presented and are utilized to reduce the computation of Volterra–Fredholm Integral equations to a system of algebraic equations. Some num...

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید