نتایج جستجو برای: rna editing
تعداد نتایج: 273016 فیلتر نتایج به سال:
RNA editing in plant organelles is an enigmatic process leading to conversion of cytidines into uridines. Editing specificity is determined by proteins; both those known so far are pentatricopeptide repeat (PPR) proteins. The enzyme catalysing RNA editing in plants is still totally unknown. We propose that the DYW domain found in many higher plant PPR proteins is the missing catalytic domain. T...
RNA editing of mitochondrial gene transcripts plays a central role during plant development and evolutionary adaptation. RNA editing has previously been reported to differ between the rice cytoplasmic male sterile (CMS) line and its maintainer line, which has been suggested as a cause for their different performances under environmental stress. To specifically test this hypothesis, a wild abort...
Pentatricopeptide repeat (PPR) proteins function in multiple processes in mRNA maturation in plastids and mitochondria (reviewed in Schmitz-Linneweber and Small, 2008). RNA maturation in chloroplasts is complex, and PPR proteins act in cisand trans-splicing, translation, RNA cleavage, RNA stabilization, and RNA editing. This large protein family, with 450 members in Arabidopsis, is characterize...
RNA editing in Trypanosoma brucei is posttranscriptional uridylate removal/addition, generally at vast numbers of pre-mRNA sites, but to date, only single editing cycles have been examined in vitro. We here demonstrate achieving sequential cycles of U deletion in vitro, with editing products confirmed by sequence analysis. Notably, the subsequent editing cycle is much more efficient and occurs ...
Direct sequencing of cytochrome oxidase subunit III (coxIII) mRNA with a specific primer confirms RNA editing in sunflower (Helianthus annus) mitochondria. Six instances of mRNA editing could be verified, one of these specific to this species. All the editing events involve C to U transitions in the coxIII mRNA causing codon changes that lead to amino acids better conserved in evolution than th...
RNA editing by adenosine deamination fuels the generation of RNA and protein diversity in eukaryotes, particularly in higher organisms. This includes the recoding of translated exons, widespread editing of retrotransposon-derived repeat elements and sequence modification of microRNA (miRNA) transcripts. Such changes can bring about specific amino acid substitutions, alternative splicing and cha...
RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated ...
Nucleic acid editing holds promise for treating genetic disease, particularly at the RNA level, where disease-relevant sequences can be rescued to yield functional protein products. Type VI CRISPR-Cas systems contain the programmable single-effector RNA-guided ribonuclease Cas13. We profiled type VI systems in order to engineer a Cas13 ortholog capable of robust knockdown and demonstrated RNA e...
Organellar RNA editing involves the modification of nucleotide sequences to maintain conserved protein functions, mainly by reverting non-neutral codon mutations. The loss of plastid editing events, resulting from mutations in RNA editing factors or through stress interference, leads to developmental, physiological and photosynthetic alterations. Recently, next generation sequencing technology ...
The type of RNA editing that converts adenosine to inosine in double-stranded RNA generates different isoforms of subunits of the ionotropic glutamate-gated ion channel receptors. Recently, it has been reported that the pre-mRNA of the serotonin 2C receptor can be edited by the same mechanism.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید