نتایج جستجو برای: strongly jordan zero product preserving map
تعداد نتایج: 868389 فیلتر نتایج به سال:
Let Mn be the set of n × n complex matrices, and for every A ∈ Mn, let Sp(A) denote the spectrum of A. For various types of products A1 ∗ · · · ∗ Ak on Mn, it is shown that a mapping φ : Mn → Mn satisfying Sp(A1 ∗ · · · ∗ Ak) = Sp(φ(A1) ∗ · · · ∗ φ(Ak)) for all A1, . . . , Ak ∈ Mn has the form X → ξS−1XS or A → ξS−1XtS for some invertible S ∈ Mn and scalar ξ. The result covers the special cases...
we have devided the thesis in to five chapters. the first recollects facts from purely algebraic theory of jordan algebras and also basic properties of jb and jb* - algebras which are needed in the sequel. in the second chapter we extend to jb* - algebras, a classical result due to cleveland [8]. this result shows shows the weakness of jb* - norm topology on a jb* - algebera. in chapter three, ...
We present a method of control of chaos in area-preserving maps. This method gives an explicit expression of a control term which is added to a given area-preserving map. The resulting controlled map which is a small and suitable modification of the original map, is again area-preserving and has an invariant curve whose equation is explicitly known.
Let $R$ be a ring with the Jacobson radical $J(R)$ and let $picolon Rto R/J(R)$ be the canonical map. Then $pi$ induces an order preserving group homomorphism $K_0picolon K_0(R)to K_0(R/J(R))$ and an affine continuous map $S(K_0pi)$ between the state space $St(R/J(R))$ and the state space $St(R).$ In this paper, we consider the natural affine map $S(K_0pi).$ We give a condition ...
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
let $mathcal{a}$ be a unital banach algebra, $mathcal{m}$ be a left $mathcal{a}$-module, and $w$ in $mathcal{z}(mathcal{a})$ be a left separating point of $mathcal{m}$. we show that if $mathcal{m}$ is a unital left $mathcal{a}$-module and $delta$ is a linear mapping from $mathcal{a}$ into $mathcal{m}$, then the following four conditions are equivalent: (i) $delta$ is a jordan left de...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید