نتایج جستجو برای: bilayer orthotropic annularcircular graphene sheets
تعداد نتایج: 89978 فیلتر نتایج به سال:
Free vibration characteristics of polymer composite plates reinforced by graphene nanosheets employing the Eringen nonlocal elasticity theory were investigated. Theoretical formulations are derived based on Hamilton’s principle implementing linear orthotropic constitutive equations of lamina while the behavior of nanostructure points affected by all other nonlocal points is also taken into acco...
We report a study of the valence band dispersion of twisted bilayer graphene using angle-resolved photoemission spectroscopy and ab initio calculations. We observe two noninteracting cones near the Dirac crossing energy and the emergence of van Hove singularities where the cones overlap for large twist angles (>5°). Besides the expected interaction between the Dirac cones, minigaps appeared at ...
Graphene-based nano-objects such as nanotrenches, nanowires, nanobelts and nanoscale superstructures have been grown by surface segregation and precipitation on carbon-doped mono- and polycrystalline nickel substrates in ultrahigh vacuum. The dominant morphologies of the nano-objects were nanowire and nanosheet. Nucleation of graphene sheets occurred at surface defects such as step edges and re...
Exciton bound states in solids between electrons and holes are predicted to form a superfluid at high temperatures. We show that by employing atomically thin crystals such as a pair of adjacent bilayer graphene sheets, equilibrium superfluidity of electron-hole pairs should be achievable for the first time. The transition temperatures are well above liquid helium temperatures. Because the sampl...
A suspended sheet of pure graphene – a plane layer of C atoms bonded together in a honeycomb lattice – is the “most two-dimensional” system imaginable. Such sheets have long been known to exist in disguised forms – in graphite (many graphene sheets stacked on top of one another), C nanotubes (a graphene sheet rolled into a cylinder) and fullerenes (buckyballs), which are small areas of a graphe...
In this paper, the effect of the temperature change on the vibration frequency of mono-layer graphene sheet embedded in an elastic medium is studied. Using the nonlocal elasticity theory, the governing equations are derived for single-layered graphene sheets. Using Levy and Navier solutions, analytical frequency equations for single-layered graphene sheets are obtained. Using Levy solution, the...
this paper investigates the lateral vibration of single-layered graphene sheets based on a new theory called doublet mechanics with a length scale parameter. after a brief reviewing of doublet mechanics fundamentals, a sixth order partial differential equation that governs the lateral vibration of single-layered graphene sheets is derived. using doublet mechanics, the relation between natural f...
In this paper, analysis of linear and nonlinear buckling of relatively thick orthotropic graphene sheets is carried out under mechanical load based on elasticity theories. With the help of nonlocal elasticity theory, the principle of virtual work, first order shear theory and Von-Karman nonlinear strain, the dominant relationship in terms of obtained displacements has been obtained, and the me...
In this paper, a two-dimensional phase field crystal model of graphene and hexagonal boron nitride (hBN) is extended to include out-of-plane deformations in stacked multilayer systems. As proof principle, the shown analytically reduce standard models flexible sheets small deformation limit. Applications strained sheets, dislocation dipoles, grain boundaries are used validate behavior single lay...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید