نتایج جستجو برای: jordan delta double derivation

تعداد نتایج: 338083  

A. Niknam H. Mahdavian Rad

Let  be a Banach algebra. Let  be linear mappings on . First we demonstrate a theorem concerning the continuity of double derivations; especially that all of -double derivations are continuous on semi-simple Banach algebras, in certain case. Afterwards we define a new vocabulary called “-higher double derivation” and present a relation between this subject and derivations and finally give some ...

Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...

A. Ebadian, M. Eshaghi Gordji,

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

Journal: :bulletin of the iranian mathematical society 2011
m. mirzavaziri e. omidvar tehrani

2009
A. Ebadian

Let n ∈ N − {1}, and let A be a Banach algebra. An additive map D : A → A is called n-Jordan derivation if D(a) = D(a)a + aD(a)a + ...+ aD(a)a+ aD(a), for all a ∈ A. Using fixed point methods, we investigate the stability of n–Jordan derivations (n–Jordan ∗−derivations) on Banach algebras (C∗−algebras). Also we show that to each approximate ∗−Jordan derivation f in a C∗− algebra there correspon...

2010
Péter Battyányi

In this paper, we examine some questions concerned with certain “skew” properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.

Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).

Hamidreza Reisi, Majid Gordji

Let H be an innite dimensional Hilbert space and K(H) be the set of all compactoperators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate ofhigher derivation and higher Jordan derivation on K(H) associated with the following Cauchy-Jensentype functional equation 2f((T + S)/2+ R) = f(T ) + f(S) + 2f(R) for all T, S, R are in K(...

After introducing double derivations of $n$-Lie algebra $L$ we‎ ‎describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual‎ ‎derivation Lie algebra $mathcal Der(L)$‎. ‎In particular‎, ‎we prove that the inner derivation algebra $ad(L)$‎ ‎is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra‎ ‎wit...

The aim of this paper is to introduce and study a new concept ofstrong double $(A)_ {Delta}$-convergent sequence offuzzy numbers with respect to an Orlicz function and also someproperties of the resulting sequence spaces of fuzzy   numbers areexamined. In addition, we define the double$(A,Delta)$-statistical convergence of fuzzy  numbers andestablish some connections between the spaces of stron...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید