let g be a (p, q) graph. let k be an integer with 2 ≤ k ≤ p and f from v (g) to the set {1, 2, . . . , k} be a map. for each edge uv, assign the label |f(u) − f(v)|. the function f is called a k-difference cordial labeling of g if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...