نتایج جستجو برای: nonlinear integro differential equation
تعداد نتایج: 659680 فیلتر نتایج به سال:
A static mixed boundary value problem of physically nonlinear elasticity for a continuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fundamental solution of an auxiliary linear operator, a non-standard boundary-domain integro-differential formulation of the problem is presented, with respect to the displacements and their gradients. Using a cut-off fu...
The present paper is devoted to the development of a kind of spectral meshless radial point interpolation (SMRPI) technique in order to obtain a reliable approximate solution for buckling of nano-actuators subject to different nonlinear forces. To end this aim, a general type of the governing equation for nano-actuators, containing integro-differential terms and nonlinear forces is considered. ...
In recent years, some promising approximate analytical solutions are proposed, such as exp-function method [1], homotopy perturbation method [2 – 11], and variational iteration method (VIM) [12 – 17]. The variational iteration method is the most effective and convenient one for both weakly and strongly nonlinear equations. This method has been shown to effectively, easily, and accurately solve ...
The spline collocation method is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)times(nN+3n)$ of integro-differential equations. This approximation reduces th...
This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...
He’s variational iteration method [1, 2], which is a modified general Lagrange multiplier method [3], has been shown to solve effectively, easily and accurately a large class of nonlinear problems with approximations which converge quickly to accurate solutions. It was successfully applied to autonomous ordinary differential equations [4], nonlinear partial differential equations with variable ...
This paper deals with the exponential stability of a class of nonlinear delay-integrodifferential equations of the form ẋ(t) = f ( t, x(t), x(t − τ1(t)), ∫ t t−τ2(t) g(t, s, x(s))ds ) , t ≥ t0, where τi(t) > 0 for i = 1, 2 and t ≥ t0. The stability relation between ordinary and delay-integro-differential equations is given. It is shown under some suitable conditions that a delay-integro-differe...
In this paper we study an integro-differential equation describing granular flow dynamics with slow erosion. This nonlinear partial differential equation is a conservation law where the flux contains an integral term. Through a generalized wave front tracking algorithm, approximate solutions are constructed and shown to converge strongly to a Lipschitz semigroup.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید