نتایج جستجو برای: optimized rayleigh ritz method
تعداد نتایج: 1708955 فیلتر نتایج به سال:
The A-gradient minimization of the Rayleigh quotient allows to construct robust and fastconvergent eigensolvers for the generalized eigenvalue problem for (A,M) with symmetric and positive definite matrices. The A-gradient steepest descent iteration is the simplest case of more general restarted Krylov subspace iterations for the special case that all step-wise generated Krylov subspaces are tw...
This paper investigates symmetrical buckling of orthotropic circular and annular plates of continuous variable thickness. Uniform compression loading is applied at the plate outer boundary. Thickness varies linearly along radial direction. Inner edge is free, while outer edge has different boundary conditions: clamped, simply and elastically restraint against rotation. The optimized RayLeigh-Ri...
The Rayleigh quotient is unarguably the most important function used in the analysis and computation of eigenvalues of symmetric matrices. The Rayleigh-Ritz method finds the stationary values of the Rayleigh quotient, called Ritz values, on a given trial subspace as optimal, in some sense, approximations to eigenvalues. In the present paper, we derive upper bounds for proximity of the Ritz valu...
As a result of environmental and accidental actions, damage occurs in structures. The early detection of any defect can be achieved by regular inspection and condition assessment. In this way, the safety and reliability of structures can be increased. This paper is devoted to propose a new and effective method for detecting, locating, and quantifying beam-like structures. This method is based o...
The Rayleigh-Ritz (RR) method finds the stationary values, called Ritz values, of the Rayleigh quotient on a given trial subspace as approximations to eigenvalues of a Hermitian operator A. If the trial subspace is A-invariant, the Ritz values are exactly some of the eigenvalues of A. Given two subspaces X and Y of the same finite dimension, such that X is A-invariant, the absolute changes in t...
The harmonic Lanczos bidiagonalization method can be used to compute the smallest singular triplets of a large matrix A. We prove that for good enough projection subspaces harmonic Ritz values converge if the columns of A are strongly linearly independent. On the other hand, harmonic Ritz values may miss some desired singular values when the columns of A are almost linearly dependent. Furthermo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید