نتایج جستجو برای: weak signed roman domination
تعداد نتایج: 175448 فیلتر نتایج به سال:
Let G = (V,E) be a graph and let f be a function f : E → {0, 1, 2}. An edge x with f(x) = 0 is said to be undefended with respect to f if it is not incident to an edge with positive weight. The function f is a weak edge Roman dominating function (WERDF) if each edge x with f(x) = 0 is incident to an edge y with f(y) > 0 such that the function f ′ : E → {0, 1, 2}, defined by f ′(x) = 1, f ′(y) =...
We investigate a domination-like problem from the exact exponential algorithms viewpoint. The classical Dominating Set problem ranges among one of the most famous and studied NP -complete covering problems [6]. In particular, the trivial enumeration algorithm of runtime O∗(2n) 4 has been improved to O∗(1.4864n) in polynomial space, and O∗(1.4689n) with exponential space [9]. Many variants of th...
a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...
a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...
Let $G=(V,E)$ be a finite and simple graph of order $n$ maximumdegree $\Delta$. A signed strong total Roman dominating function ona $G$ is $f:V(G)\rightarrow\{-1, 1,2,\ldots, \lceil\frac{\Delta}{2}\rceil+1\}$ satisfying the condition that (i) forevery vertex $v$ $G$, $f(N(v))=\sum_{u\in N(v)}f(u)\geq 1$, where$N(v)$ open neighborhood (ii) every forwhich $f(v)=-1$ adjacent to at least one vertex...
A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of f is w(f) = ∑ v∈V f(v). The Roman domination number is the minimum weight of an RDF in G. It is known that for every graph G, the Roman domination number of G is bounded above...
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...
A Roman domination function on a graph G is a function r : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman function is the value r(V (G)) = ∑ u∈V (G) r(u). The Roman domination number γR(G) of G is the minimum weight of a Roman domination function on G . "Roman Criticality" has been ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید