نتایج جستجو برای: رواناب شبکه عصبی
تعداد نتایج: 44842 فیلتر نتایج به سال:
بار رسوب جریان، شاخص مفیدی در پیشبینی فرسایش خاک در حوزههای آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب میتواند در مدیریت و اجرای پروژههای آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دستهبندی دادهها بهعنوان راهکاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانههای خلیفهترخان و چهلگزی در حوضۀ قشلاق...
آگاهی ازتوان طبیعی تولید رواناب درحوضههای آبریز یکی از نیازهای اساسی برای برنامهریزی اصولی جهت بهرهبرداری بهینه از رواناب می باشد. از اینرو شبیهسازی بارش –رواناب در حوضههای آبریز از اهمیت زیادی برخوردار میباشد. در این مقاله به شبیهسازی پیوسته بارش-رواناب در حوضه سد مارون با شبکه های عصبی مصنوعی پرداخته شد تا توانایی و دقت این شبکه در برآورد رواناب نیز ارزیابی گردد. با توجه با اینکه تعدا...
سیل، یکی از پدیدههای ویرانگر طبیعی است که پیشبینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(MLP)، قانون یادگیری پسانتشار خطا(BP)، الگوریتم لونبرگ- مارکوارت(LM) و معیارهای RMSE و R2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبی...
در این پروژه به منظور شبیه سازی بارش-رواناب از دو مدل ihacres و شبکه عصبی مصنوعی (ann ) استفاده شده است. مدل مفهومیihacres، که مبتنی بر داده های بارش و دما است، از دو بخش تشکیل شده است. این مدل در گام زمانی روزانه عمل می کند و مولفه های کند و تند جریان را (یعنی رواناب سطحی و جریان پایه) محاسبه می کند. هنگامی که به دلیل ضعف سطح اطلاعات موجود امکان درک مفهوم پدیده های فیزیکی فراهم نباشد و یا به ط...
لزومِ پیشبینی بده رودخانه در کارهای عمرانی، برنامهریزی برای استفادة بهینه از مخازن سدها، ساماندهیِ رودخانهو هشدار سیل، کاملاً احساس میشود. در این راستا مسئلۀ بارش- رواناب بیشترین توجه مدلسازهای شبکههای عصبی2 برای پیشبینی بارش- mlp مصنوعی 1 را به خود معطوف کرده است. در این تحقیق از شبکههای عصبی چند لایهرواناب حوضه آبریز برفگیر لیقوانچای واقع در استان آذربایجان شرقی استفاده شده است. اطلاعات این حوضه...
چکیده به منظور مدیریت مناسب یک حوضه آبخیز، شناخت ساختار، عملکرد و ارتباطات آن ضروری است. مهمترین بخش از این شناخت مربوط به شناسایی ارتباطات ورودیها و خروجیها و نحوه عملکرد آنها و ارائه مدلی جهت معرفی بارش و رواناب حوضه است. رابطه بارندگی–رواناب، یکی از پیچیدهترین فرآیندهای هیدرولوژیکی است که درک آن از اهمیت زیادی در هیدرولوژی و منابع آب برخوردار است. نتایج مدلهای آماری و رگرسیونی بر...
موضوع تخمین و برآورد رواناب یکی از مهم ترین و چالش برانگیزترین مراحل مطالعات و پروژههای عمرانی-آبی و یکی از بنیادیترین موضوعات کاربردی در علم هیدرولوژی است. علاوه بر نیاز به این اطلاعات برای پروژهها، در برنامهریزی، مدیریت و سایر اقدامات مرتبط، وجود خطای بالا در برآورد رواناب میتواند سبب بروز مشکلات و مخاطرات جدی گردد. برآورد کمتر از میزان واقعی رواناب ممکن است سبب خسارات جانی و مالی ناشی ا...
یکی از پیچیده ترین فرآیندهای هیدرولوژیکی فرآیند بارش-رواناب است, که از پارامترسهای مختلف فیزیکی و هیدرولوژیکی تاثیر می پذیرد. در این پژوهش با بهره گیری از روش های آماری armax, شبکه عصبی, عصبی-فازی (anfis با جداسازی خوشه ای و شبکه ای) و دو مدل بدست آمده از ترکیب آنها به منظور مدل سازی فرآیند بارش-رواناب و پیش بینی جریان رودخانه بهره گیری شد. به طوری که درآغاز ساختار بهینه هر یک از مدل ها تعیین ...
سیل، یکی از پدیده های ویرانگر طبیعی است که پیش بینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(mlp)، قانون یادگیری پس انتشار خطا(bp)، الگوریتم لونبرگ- مارکوارت(lm) و معیارهای rmse و r2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبی...
در علوم مهندسی منابع آب و هیدرولوژی شناخت و تحلیل و تغییرات بارندگی و رواناب سطحی از نیازهای اساسی محسوب می شود. برآورد رواناب حاصل از بارندگی در یک حوزه آبخیز از جهات گوناگون دارای اهمیت می باشد. در پژوهش حاضر با بهره گیری از داده های مشاهده ای کاربرد شبکه عصبی مصنوعی در برآورد ضریب رواناب بررسی شد. منطقه مورد مطالعه حوزه آبخیز راسک - سرباز می باشد. داده های مربوط به 33 واقعه بارندگی و رواناب ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید